Analysis of Mechanical Performance and Microstructure of Steel Slag Processed with Accelerated Carbonation

Article Preview

Abstract:

The accelerated carbonation with different pressure steaming conditions was used to process the steel slag, so the slag could turn into a primary cementitious product with carbonation activity. XRD, FTIR, TG, N2 absorption BET surface area analyzer and SEM were used to characterize the mineral and chemical compositions and microstructure of each sample before and after the carbonation. The results show that: the carbonation products with different morphologies are formed under different temperature conditions. The optimum temperature for the accelerated carbonation for processing the steel slag is selected to be 90 °C, which results in the compressive strength of 32.8 MPa. The BET specific surface area of the steel slag reduces after carbonation, the sample density increased after carbonation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1240-1251

Citation:

Online since:

January 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] WANG Shao li. Direct faced to Kyoto Protocol: past, present and future, International Petroleum Economics Monthly. 13(2) (2005) 14-16.

Google Scholar

[2] SALVADOR C, LUAD, ANTHONY E J. Enhancement of CaO for CO2 capture in an FBC environment, Chemical Engineering Journal. 96(1) (2003) 187-195.

DOI: 10.1016/j.cej.2003.08.011

Google Scholar

[3] Lackner K. A guide to CO2 sequestration, Science. 300(56) (2003) 1677-1678.

Google Scholar

[4] Shu-Yuan Pan, Rahul Adhikari, Yi-Hung Chen, Ping Li, Pen-Chi Chiang. Integrated and innovative steel slag utilization for iron reclamation,green material production and CO2 fixation via accelerated Carbonation, Journal of Cleaner Production. 137 (2016) 617-631.

DOI: 10.1016/j.jclepro.2016.07.112

Google Scholar

[5] Santos R M, Ling D, Sarvaramini A, et al. Stabilization of basic oxygen furnace slag by hot-stage carbonation treatment, Chemical Engineering Journal. 203(5) (2012) 239-250.

DOI: 10.1016/j.cej.2012.06.155

Google Scholar

[6] Kaliyavaradhan S K, Ling T C. Potential of CO2 sequestration through construction and demolition (C&D) waste—An overview, Journal of CO2 Utilization. 20 (2017) 234-242.

DOI: 10.1016/j.jcou.2017.05.014

Google Scholar

[7] Chang E E, Chen C H, Chen Y H, et al. Performance evaluation for carbonation of steel-making slags in a slurry reactor, Journal of Hazardous Materials. 186(1) (2011) 558.

DOI: 10.1016/j.jhazmat.2010.11.038

Google Scholar

[8] Wang Q, Shi M, Yang J. Influence of classified steel slag with particle sizes smaller than 20 μm on the properties of cement and concrete, Construction & Building Materials. 123 (2016) 601-610.

DOI: 10.1016/j.conbuildmat.2016.07.042

Google Scholar

[9] Chen K W, Pan S Y, Chen C T, et al. High-gravity Carbonation of Basic Oxygen Furnace Slag for CO2 Fixation and Utilization in Blended Cement, Journal of Cleaner Production. 124 (2016) 350-360.

DOI: 10.1016/j.jclepro.2016.02.072

Google Scholar

[10] Salman M, Özlem Cizer, Pontikes Y, et al. Effect of accelerated carbonation on AOD stainless steel slag for its valorisation as a CO2 sequestering construction material, Chemical Engineering Journal. 246(4) (2014) 39-52.

DOI: 10.1016/j.cej.2014.02.051

Google Scholar

[11] Capobianco O, Costa G, Thuy L, et al. Carbonation of stainless steel slag in the context of in situ Brownfield remediation, Minerals Engineering. 59(5) (2014) 91-100.

DOI: 10.1016/j.mineng.2013.11.005

Google Scholar

[12] Chang E E, Anchia C, Pan S Y, et al. Carbonation of basic oxygen furnace slag with metalworking wastewater in a slurry reactor, International Journal of Greenhouse Gas Control. 12(1) (2013) 382-389.

DOI: 10.1016/j.ijggc.2012.11.026

Google Scholar

[13] An-Jun X U, Zhang H N, Dong-Feng H E. Carbonation Behavior Assessment of RH Slag Batch after Aqueous Extraction at Environmental Pressure, Journal of Iron & Steel Research International. 21(S1) (2014) 74-81.

DOI: 10.1016/s1006-706x(14)60125-4

Google Scholar

[14] Crom K D, Yi W C, Gerven T V, et al. Purification of slag-derived leachate and selective carbonation for high-quality precipitated calcium carbonate synthesis, Chemical Engineering Research & Design. 104 (2015) 180-190.

DOI: 10.1016/j.cherd.2015.07.029

Google Scholar

[15] Teir S, Eloneva S, Fogelholm C J, et al. Dissolution of steelmaking slags in acetic acid for precipitated calcium carbonate production, Energy. 32(4) (2007) 528-539.

DOI: 10.1016/j.energy.2006.06.023

Google Scholar

[16] Eloneva S, Said A, Fogelholm C J, et al. Preliminary assessment of a method utilizing carbon dioxide and steelmaking slags to produce precipitated calcium carbonate, Applied Energy. 90(1) (2012) 329-334.

DOI: 10.1016/j.apenergy.2011.05.045

Google Scholar

[17] Kim E, Spooren J, Broos K, et al. Valorization of stainless steel slag by selective chromium recovery and subsequent carbonation of the matrix material, Journal of Cleaner Production. 117 (2016) 221-228.

DOI: 10.1016/j.jclepro.2016.01.032

Google Scholar

[18] Costa G, Polettini A, Pomi R, et al. Leaching modelling of slurry-phase carbonated steel slag, Journal of Hazardous Materials. 302 (2015) 415.

DOI: 10.1016/j.jhazmat.2015.10.005

Google Scholar

[19] Kodama S, Nishimoto T, Yamamoto N, et al. Development of a new pH-swing CO2 mineralization process with a recyclable reaction solution, Energy. 33(5) (2008) 776-784.

DOI: 10.1016/j.energy.2008.01.005

Google Scholar

[20] Morone M, Costa G, Polettini A, et al. Valorization of steel slag by a combined carbonation and granulation treatment, Minerals Engineering. 59(I) (2014) 82-90.

DOI: 10.1016/j.mineng.2013.08.009

Google Scholar

[21] Chang E E, Pan Shuyuan, Chen Yihung, et al. CO2 sequestration by carbonation of steel-making slags in autoclave reactor, Journal of Hazardous Material. 195 (2011) 107-116.

DOI: 10.1016/j.jhazmat.2011.08.006

Google Scholar

[22] Baciocchi R, Costaa G, et al. Thin-film versus slurry-phase carbonation of steel slag: CO2 uptake and effects on mineralogy, Journal of Hazardous Material. 283 (2015) 302-313.

DOI: 10.1016/j.jhazmat.2014.09.016

Google Scholar

[23] Kiacher Behfarnia, Majid Rostami. An assessment on parameters affecting the carbonation of alkali-activated slag concrete, Journal of Clear Production. 157(7) (2017) 1-9.

DOI: 10.1016/j.jclepro.2017.04.097

Google Scholar

[24] Smitha Gopinath, Anurag Mehra. Carbon sequestration during steel production: Modelling the dynamics of aqueous carbonation of steel slag, Chemical Engineering Research and Design. 115(10) (2016) 173-181.

DOI: 10.1016/j.cherd.2016.09.010

Google Scholar

[25] N.L. Ukwattage, P.G. Ranjith, X. Li. Steel-making slag for mineral sequestration of carbon dioxide by accelerated carbonation, Measurement. 97 (2017) 15-22.

DOI: 10.1016/j.measurement.2016.10.057

Google Scholar

[26] Alessandra Polettini, et al. CO2 sequestration through aqueous accelerated carbonation of BOF slag: A factorial study of parameters effects, Journal of Environmental Management. 167 (2016) 185-195.

DOI: 10.1016/j.jenvman.2015.11.042

Google Scholar

[27] Polettini A, Pomi R, Stramazzo A. Carbon sequestration through accelerated carbonation of BOF slag: Influence of particle size characteristics, Chemical Engineering Journal. 298 (2016) 26-35.

DOI: 10.1016/j.cej.2016.04.015

Google Scholar

[28] Santos R M, Bouwel J V, Vandevelde E, et al. Accelerated mineral carbonation of stainless steel slags for CO2 storage and waste valorization: Effect of process parameters on geochemical properties, International Journal of Greenhouse Gas Control. 17(17) (2013) 32-45.

DOI: 10.1016/j.ijggc.2013.04.004

Google Scholar

[29] Monkman S, Shao Y, Shi C. Carbonated Ladle Slag Fines for Carbon Uptake and Sand Substitute, Journal of Materials in Civil Engineering. 21(11) (2009) 657-665.

DOI: 10.1061/(asce)0899-1561(2009)21:11(657)

Google Scholar

[30] Tao Wang, Hao Huang, Xutao Hu, et al. Accelerated mineral carbonation curing of cement paste for CO2 sequestration and enhanced properties of blended calcium silicate, Chemical Engineering. 323(9) (2017) 320-329.

DOI: 10.1016/j.cej.2017.03.157

Google Scholar

[31] Elke Gruyaert, Philip Van den Heede, Nele De Belie. Carbonation of slag concrete: Effect of the cement level and curing on the carbonation coefficient-Effect of carbonation on the pore structure, Cement and Concrete Composites. 1(1) (2013) 39-48.

DOI: 10.1016/j.cemconcomp.2012.08.024

Google Scholar

[32] Ko M S, Chen Y L, Jiang J H. Accelerated carbonation of basic oxygen furnace slag and the effects on its mechanical properties, Construction & Building Materials. 98 (2015) 286-293.

DOI: 10.1016/j.conbuildmat.2015.08.051

Google Scholar

[33] Lackner K S, Butt D P, Wendt C H. Progress on binding CO2 in mineral substrates, Energy Conversion Management. 38 (1997) 259-271.

DOI: 10.1016/s0196-8904(96)00279-8

Google Scholar

[34] Stolaroll J K, Lowry U V, Keith D W. Using CaO and MgO rich industrial waste streams for carbon sequestration, Energy Converlion Management. 46(5) (2005) 687-696.

DOI: 10.1016/j.enconman.2004.05.009

Google Scholar

[35] Eleanor J. Berryman, Anthony E. Williams-Jones, et al. Steel slag carbonation in a flow-through reactor system:The role of fluid-flux, Journal of Environmental Sciences. 27 (2015) 266-275.

DOI: 10.1016/j.jes.2014.06.041

Google Scholar

[36] Ghouleh Z, Guthrie R I L, Shao Y. High-strength KOBM steel slag binder activated by carbonation, Construction & Building Materials. 99 (2015) 175-183.

DOI: 10.1016/j.conbuildmat.2015.09.028

Google Scholar

[37] Mo L, Zhang F, Deng M. Mechanical performance and microstructure of the calcium carbonate binders produced by carbonating steel slag paste under CO2 curing, Cement & Concrete Research. 88 (2016) 217-226.

DOI: 10.1016/j.cemconres.2016.05.013

Google Scholar

[38] D C. Johnson, C. Macleod, P. Carey, C. Hills. Solidification of stainless steel slag by accelerated carbonation, Environment Technology. 24 (2003) 671-678.

DOI: 10.1080/09593330309385602

Google Scholar

[39] Pan S Y, Chiang P C, Chen Y H, et al. Ex Situ CO2 capture by carbonation of steelmaking slag coupled with metalworking wastewater in a rotating packed bed, Environmental Science & Technology. 47(7) (2013) 3308-15.

DOI: 10.1021/es304975y

Google Scholar

[40] Koen De Croma, et al. Purification of slag-derived leachate and selective carbonation for high-quality precipitated calcium carbonate synthesis, Chemical Engineering Research and Design. 104 (2015)180-190.

DOI: 10.1016/j.cherd.2015.07.029

Google Scholar