[1]
Das N. Advances in Nickel-based cast super-alloys. T INDIAN I METALS, 2010, 63(2): 265-274.
Google Scholar
[2]
V. Fallaha, M. Amoorezaeib, N, Provatasb, S. F. Corbina, A. Khajepou, et al. Phase-field simulation of solidification morphology in laser powder deposition of Ti-Nb alloys. Acta Mater. 2012. 60(4): 1633-1646.
DOI: 10.1016/j.actamat.2011.12.009
Google Scholar
[3]
H. Z. Chen, Y.C. Shu. Phase-field modeling of martensitic microstructure with inhomogeneous elasticity. Appl. Phys. 2013, 113(12): 123506.
DOI: 10.1063/1.4796098
Google Scholar
[4]
K. Ahmed, C. A. Yablinsky, A. Schulte, T. Allen, A. El-Azab. et al Phase field modeling of the effect of porosity on grain growth kinetics in polycrystalline ceramics. Modeling Simul. Mater. Sci. Eng. 2013,21(6): 065005.
DOI: 10.1088/0965-0393/21/6/065005
Google Scholar
[5]
M. Hofacker, C. Miehe. Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation. INT J FRACTURE, 2012, 178(1): 113-129.
DOI: 10.1007/s10704-012-9753-8
Google Scholar
[6]
X. B. Zhao, Lin L, W G. Zhang, Qu M, J. Zhang, H Z. Fu. Analysis of competitive growth mechanism of stray grains of single crystal super-alloys during directional solidification process. RARE METAL MAT ENG, 2011, 40(1): 9-13.
DOI: 10.1016/s1875-5372(11)60009-x
Google Scholar
[7]
Z. H. Gao, J. Xu, Z. F. Zhang, et al. Effect of Annular Electromagnetic Stirring Process on Solidification Microstructure of 7075 Aluminum Alloy, Adv. Mater. Res, 2013, 652: 2418-2426.
DOI: 10.4028/www.scientific.net/amr.652-654.2418
Google Scholar
[8]
H.Z. Chen, Y.C. Shu. Phase-field modeling of martensitie microstructure with inhomogeneous elasticity. Appl. Phys. 2013, 21(6): 065005.
Google Scholar
[9]
L .F .Du, R .Zhang, L. M. Zhang. Phase-field simulation of dendrite growth in a forced liquid metal flow coupling with boundary heat flux. SCI CHINA TECHNOL SC. 2013. 56(10): 2586-2593.
DOI: 10.1007/s11431-013-5306-2
Google Scholar
[10]
V. Fallah, N. Ofori-Opoku, Jonathan Stolle, et al. Simulation of early-stage clustering in ternary metal alloys using the phase-field crystal method. ACTA MATER, 2013, 61(10): 3653-3666.
DOI: 10.1016/j.actamat.2013.02.053
Google Scholar
[11]
V. Fallah, A. Korinek. Atomistic investigation of clustering phenomenon in the Al-Cu system: Three-dimensional phase-field crystal simulation and HRTEM/HRSTEM characterization. ACTA MATER, 2013, 61(17): 6372-6386.
DOI: 10.1016/j.actamat.2013.07.015
Google Scholar
[12]
A. Choudhury, M. Kellner, B. Nestler. A method for coupling the phase-field model based on a grand-potential formalism to thermodynamic databases. CURR OPIN SOLID ST M, 2015, 19(5): 287-300.
DOI: 10.1016/j.cossms.2015.03.003
Google Scholar
[13]
X. H. Wu, G. Wang, L. Z. Zhao, D. C. Zeng, et al. Phase field simulation of dendrite growth in binary Ni–Cu alloy under the applied temperature gradient. COMP MATER SCI, 2016, 117: 286-293.
DOI: 10.1016/j.commatsci.2016.02.005
Google Scholar
[14]
G. Boussinot, M. Apel. Phase field and analytical study of mushy zone solidification in a static thermal gradient: From dendrites to planar front . ACTA MATER, 2017, 122: 310-321.
DOI: 10.1016/j.actamat.2016.09.053
Google Scholar
[15]
X. D. Wang, H. X. Zhang, W. Zhou, et al. A 3D phase-field model for simulating the crystal growth of semi-crystalline polymers . INT J HEAT MASS TRAN, 2017, 115: 194-205.
DOI: 10.1016/j.ijheatmasstransfer.2017.08.016
Google Scholar
[16]
T. Takaki, S. Sakane, M. Ohno, et al. Primary arm array during directional solidification of a single-crystal binary alloy: Large-scale phase-field study. ACTA MATER, 2016, 118: 230-243.
DOI: 10.1016/j.actamat.2016.07.049
Google Scholar
[17]
T. Takaki, M. Ohno, T. Shimokawabe, et al. Two-dimensional phase-field simulations of dendrite competitive growth during the directional solidification of a binary alloy bi-crystal . ACTA MATER, 2014, 81: 272-283.
DOI: 10.1016/j.actamat.2014.08.035
Google Scholar
[18]
C. Qi, J. F. Li, B. Xu, et al. Atomistic characterization of solid-liquid interfaces in the Cu-Ni binary alloy system . COMP MATER SCI, 2016, 125: 72-81.
DOI: 10.1016/j.commatsci.2016.08.031
Google Scholar
[19]
D. Tourret, Y. Song, A.J. Clarke, et al. Grain growth competition during thin-sample directional solidification of dendritic microstructures: A phase-field study. ACTA MATER, 2017, 122: 220-235.
DOI: 10.1016/j.actamat.2016.09.055
Google Scholar
[20]
D. Tourret, A. Karma. Three-dimensional dendritic needle network model for alloy Solidification. ACTA MATER, 2016, 120: 240-254.
DOI: 10.1016/j.actamat.2016.08.041
Google Scholar
[21]
Z. H. Gao, J. Xu, Z. F. Zhang, et al. Effect of annular electromagnetic stirring process on solidification microstructure of 7075 aluminum alloy. Adv. Mater. Res, 2013, 652: 2418-2426.
DOI: 10.4028/www.scientific.net/amr.652-654.2418
Google Scholar
[22]
J. Wu, Z. P. Guo, C. Luo et al. Development of a parallel adaptive multi-grid algorithm for solving the multi-scale thermal-solute 3D phase-field problems. COMP MATER SCI, 2018, 142: 89-98.
DOI: 10.1016/j.commatsci.2017.09.045
Google Scholar
[23]
D. Tourret, A. Karma. Growth competition of columnar dendritic grains: A phase-field study. ACTA MATER, 2015, 82: 64-83.
DOI: 10.1016/j.actamat.2014.08.049
Google Scholar
[24]
G. Boussinot, M. Apel. Phase field and analytical study of mushy zone solidification in a static thermal gradient: From dendrites to planar front. ACTA MATER, 2017, 122: 310-321.
DOI: 10.1016/j.actamat.2016.09.053
Google Scholar
[25]
C. Yang, Q. Y. Xu, B. C. Liu, et al. A high precision extrapolation method in multiphase-field model for simulating dendrite growth. J CRYST GROWTH, 2018, 490: 25-34.
DOI: 10.1016/j.jcrysgro.2018.03.017
Google Scholar
[26]
A. Choudhury, M. Kellner, B. Nestler, et al. A method for coupling the phase-field model based on a grand-potential formalism to thermodynamic databases. CURR OPIN SOLID ST M, 2015, 19(5): 287-300.
DOI: 10.1016/j.cossms.2015.03.003
Google Scholar
[27]
H. Neumann-Heyme, K. Eckert, C. Beckermann, et al. General evolution equation for the specific interface area of dendrites during alloy solidification. ACTA MATER, 2017, 140: 87-96.
DOI: 10.1016/j.actamat.2017.08.021
Google Scholar
[28]
L. Zhang, W. Zhou, P. H. Hu, et al. Microstructural characteristics and mechanical properties of Mg-Zn-Y alloy containing quasicrystal phase treated by pulsed magnetic field. J ALLOY COMPD, 2016, 688: 868-874.
DOI: 10.1016/j.jallcom.2016.07.280
Google Scholar
[29]
J. F. Wang, Q. J. Sun, H. Wang, et al. Effect of location on microstructure and mechanical properties of additive layer manufactured Inconel 625 using gas tungsten arc welding. MAT SCI ENG R, 2016, 676 :395-405.
DOI: 10.1016/j.msea.2016.09.015
Google Scholar