Numerical Simulation of Dendrite Growth and Micro Segregation of Ni-Cu Alloy

Article Preview

Abstract:

Dendrite growth of Ni-0.4083%Cu alloy was simulated by the phase-field method in the paper. The impact of super-cooling degree and super-saturation degree and solute segregation on dendrite growth was studied systematically. solute segregation increased initially then tended to decrease. The increase of super-saturation can promote the growth of lateral branch and destroy the constancy of the dendrite tip at the same time. The simulation result was compared with the microscopic theory and they have a good agreement.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

155-162

Citation:

Online since:

January 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Das N. Advances in Nickel-based cast super-alloys. T INDIAN I METALS, 2010, 63(2): 265-274.

Google Scholar

[2] V. Fallaha, M. Amoorezaeib, N, Provatasb, S. F. Corbina, A. Khajepou, et al. Phase-field simulation of solidification morphology in laser powder deposition of Ti-Nb alloys. Acta Mater. 2012. 60(4): 1633-1646.

DOI: 10.1016/j.actamat.2011.12.009

Google Scholar

[3] H. Z. Chen, Y.C. Shu. Phase-field modeling of martensitic microstructure with inhomogeneous elasticity. Appl. Phys. 2013, 113(12): 123506.

DOI: 10.1063/1.4796098

Google Scholar

[4] K. Ahmed, C. A. Yablinsky, A. Schulte, T. Allen, A. El-Azab. et al Phase field modeling of the effect of porosity on grain growth kinetics in polycrystalline ceramics. Modeling Simul. Mater. Sci. Eng. 2013,21(6): 065005.

DOI: 10.1088/0965-0393/21/6/065005

Google Scholar

[5] M. Hofacker, C. Miehe. Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation. INT J FRACTURE, 2012, 178(1): 113-129.

DOI: 10.1007/s10704-012-9753-8

Google Scholar

[6] X. B. Zhao, Lin L, W G. Zhang, Qu M, J. Zhang, H Z. Fu. Analysis of competitive growth mechanism of stray grains of single crystal super-alloys during directional solidification process. RARE METAL MAT ENG, 2011, 40(1): 9-13.

DOI: 10.1016/s1875-5372(11)60009-x

Google Scholar

[7] Z. H. Gao, J. Xu, Z. F. Zhang, et al. Effect of Annular Electromagnetic Stirring Process on Solidification Microstructure of 7075 Aluminum Alloy, Adv. Mater. Res, 2013, 652: 2418-2426.

DOI: 10.4028/www.scientific.net/amr.652-654.2418

Google Scholar

[8] H.Z. Chen, Y.C. Shu. Phase-field modeling of martensitie microstructure with inhomogeneous elasticity. Appl. Phys. 2013, 21(6): 065005.

Google Scholar

[9] L .F .Du, R .Zhang, L. M. Zhang. Phase-field simulation of dendrite growth in a forced liquid metal flow coupling with boundary heat flux. SCI CHINA TECHNOL SC. 2013. 56(10): 2586-2593.

DOI: 10.1007/s11431-013-5306-2

Google Scholar

[10] V. Fallah, N. Ofori-Opoku, Jonathan Stolle, et al. Simulation of early-stage clustering in ternary metal alloys using the phase-field crystal method. ACTA MATER, 2013, 61(10): 3653-3666.

DOI: 10.1016/j.actamat.2013.02.053

Google Scholar

[11] V. Fallah, A. Korinek. Atomistic investigation of clustering phenomenon in the Al-Cu system: Three-dimensional phase-field crystal simulation and HRTEM/HRSTEM characterization. ACTA MATER, 2013, 61(17): 6372-6386.

DOI: 10.1016/j.actamat.2013.07.015

Google Scholar

[12] A. Choudhury, M. Kellner, B. Nestler. A method for coupling the phase-field model based on a grand-potential formalism to thermodynamic databases. CURR OPIN SOLID ST M, 2015, 19(5): 287-300.

DOI: 10.1016/j.cossms.2015.03.003

Google Scholar

[13] X. H. Wu, G. Wang, L. Z. Zhao, D. C. Zeng, et al. Phase field simulation of dendrite growth in binary Ni–Cu alloy under the applied temperature gradient. COMP MATER SCI, 2016, 117: 286-293.

DOI: 10.1016/j.commatsci.2016.02.005

Google Scholar

[14] G. Boussinot, M. Apel. Phase field and analytical study of mushy zone solidification in a static thermal gradient: From dendrites to planar front . ACTA MATER, 2017, 122: 310-321.

DOI: 10.1016/j.actamat.2016.09.053

Google Scholar

[15] X. D. Wang, H. X. Zhang, W. Zhou, et al. A 3D phase-field model for simulating the crystal growth of semi-crystalline polymers . INT J HEAT MASS TRAN, 2017, 115: 194-205.

DOI: 10.1016/j.ijheatmasstransfer.2017.08.016

Google Scholar

[16] T. Takaki, S. Sakane, M. Ohno, et al. Primary arm array during directional solidification of a single-crystal binary alloy: Large-scale phase-field study. ACTA MATER, 2016, 118: 230-243.

DOI: 10.1016/j.actamat.2016.07.049

Google Scholar

[17] T. Takaki, M. Ohno, T. Shimokawabe, et al. Two-dimensional phase-field simulations of dendrite competitive growth during the directional solidification of a binary alloy bi-crystal . ACTA MATER, 2014, 81: 272-283.

DOI: 10.1016/j.actamat.2014.08.035

Google Scholar

[18] C. Qi, J. F. Li, B. Xu, et al. Atomistic characterization of solid-liquid interfaces in the Cu-Ni binary alloy system . COMP MATER SCI, 2016, 125: 72-81.

DOI: 10.1016/j.commatsci.2016.08.031

Google Scholar

[19] D. Tourret, Y. Song, A.J. Clarke, et al. Grain growth competition during thin-sample directional solidification of dendritic microstructures: A phase-field study. ACTA MATER, 2017, 122: 220-235.

DOI: 10.1016/j.actamat.2016.09.055

Google Scholar

[20] D. Tourret, A. Karma. Three-dimensional dendritic needle network model for alloy Solidification. ACTA MATER, 2016, 120: 240-254.

DOI: 10.1016/j.actamat.2016.08.041

Google Scholar

[21] Z. H. Gao, J. Xu, Z. F. Zhang, et al. Effect of annular electromagnetic stirring process on solidification microstructure of 7075 aluminum alloy. Adv. Mater. Res, 2013, 652: 2418-2426.

DOI: 10.4028/www.scientific.net/amr.652-654.2418

Google Scholar

[22] J. Wu, Z. P. Guo, C. Luo et al. Development of a parallel adaptive multi-grid algorithm for solving the multi-scale thermal-solute 3D phase-field problems. COMP MATER SCI, 2018, 142: 89-98.

DOI: 10.1016/j.commatsci.2017.09.045

Google Scholar

[23] D. Tourret, A. Karma. Growth competition of columnar dendritic grains: A phase-field study. ACTA MATER, 2015, 82: 64-83.

DOI: 10.1016/j.actamat.2014.08.049

Google Scholar

[24] G. Boussinot, M. Apel. Phase field and analytical study of mushy zone solidification in a static thermal gradient: From dendrites to planar front. ACTA MATER, 2017, 122: 310-321.

DOI: 10.1016/j.actamat.2016.09.053

Google Scholar

[25] C. Yang, Q. Y. Xu, B. C. Liu, et al. A high precision extrapolation method in multiphase-field model for simulating dendrite growth. J CRYST GROWTH, 2018, 490: 25-34.

DOI: 10.1016/j.jcrysgro.2018.03.017

Google Scholar

[26] A. Choudhury, M. Kellner, B. Nestler, et al. A method for coupling the phase-field model based on a grand-potential formalism to thermodynamic databases. CURR OPIN SOLID ST M, 2015, 19(5): 287-300.

DOI: 10.1016/j.cossms.2015.03.003

Google Scholar

[27] H. Neumann-Heyme, K. Eckert, C. Beckermann, et al. General evolution equation for the specific interface area of dendrites during alloy solidification. ACTA MATER, 2017, 140: 87-96.

DOI: 10.1016/j.actamat.2017.08.021

Google Scholar

[28] L. Zhang, W. Zhou, P. H. Hu, et al. Microstructural characteristics and mechanical properties of Mg-Zn-Y alloy containing quasicrystal phase treated by pulsed magnetic field. J ALLOY COMPD, 2016, 688: 868-874.

DOI: 10.1016/j.jallcom.2016.07.280

Google Scholar

[29] J. F. Wang, Q. J. Sun, H. Wang, et al. Effect of location on microstructure and mechanical properties of additive layer manufactured Inconel 625 using gas tungsten arc welding. MAT SCI ENG R, 2016, 676 :395-405.

DOI: 10.1016/j.msea.2016.09.015

Google Scholar