High Temperature Deformation Behavior in the Isothermal Compression of Ti-5Al-4Mo-2Cr-4Zr-2Sn-1Fe Alloy

Article Preview

Abstract:

The deformation behavior in isothermal compression of Ti-5Al-4Mo-2Cr-4Zr-2Sn-1Fe alloy was investigated at the deformation temperature of 800°C, 850°C, 900°C, 950°C and 1000°C, the strain rate of 0.01s-1, 0.1s-1, 1.0s-1 and 10.0s-1, and the height reduction of 70%. The flow stress increases rapidly with the increasing of strain at the beginning of deformation. When the strain exceeds a certain value, the flow stress begins to decline and becomes steady. With the increasing of deformation temperature and decreasing of strain rate, the steady stress and peak stress decrease significantly. The effect of strain on the processing maps of Ti-5Al-4Mo-2Cr-4Zr-2Sn-1Fe alloy is obvious. As the strain increases, the instable region moves towards high temperature and high strain rate area. Meanwhile, the contour of efficiency of power dissipation becomes more and more intensive, and the region with high efficiency of power dissipation reduces. Strain rate of 0.01s-1 and deformation temperature of 900°C are the optimum processing parameters for Ti-5Al-4Mo-2Cr-4Zr-2Sn-1Fe alloy forging under strain of 0.3.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

135-141

Citation:

Online since:

January 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.O. Peters, G. Lütjering, M. Koren, H. Puschnik and R.R. Boyer, Processing, microstructure, and properties of β-CEZ, Mater. Sci. Eng. A. 213 (1996) 71-80.

DOI: 10.1016/0921-5093(96)10225-2

Google Scholar

[2] J.C. Huang, Workability and application of Ti-5Al-4Mo-2Cr-4Zr-2Sn-1Fe titanium alloy, Titan. Ind. Prog. 5 (1996) 34-36.

DOI: 10.4028/www.scientific.net/msf.944.135

Google Scholar

[3] Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark and D.R. Barker, Modeling of dynamic material behavior in hot deformation: forging of Ti-6242, Metall. Mater. Trans. A. 15 (1984) 1883-1892.

DOI: 10.1007/bf02664902

Google Scholar

[4] Y.V.R.K. Prasad, Recent advances in the science of mechanical processing, Indian J. Technol. 28 (1990) 435-451.

Google Scholar

[5] J. Luo, M.Q. Li, H. Li and W.X. Yu, Hot deformation behavior and flow stress model of TC4 titanium alloy, Trans. Nonferr. Metal. Soc. Chin. 18 (2008) 1395-1401.

Google Scholar

[6] B. Wang, H.Z. Guo, Z.K. Yao, J.K. Chen and P.C. Li, Effect of hot pressing parameters on flow stress and microstructure of TA15 alloy, Forg. Stamp. Technol. 31 (2006) 106-109.

Google Scholar

[7] Y.H. Zhao, P. Ge, Y.Q. Zhao, G.J. Yang and J.H. Wen, Study on hot deformation behavior of Ti-1300 alloy, Rare Metal Mater. Eng. 38 (2009) 46-49.

Google Scholar

[8] H. Ziegler, Progress in Solid Mechanics, in: I.N. Sneedon, R. Hill (Eds), New York, 1963, pp.63-193.

Google Scholar

[9] S. Bruschi, S. Poggio, F. Quadrini and M.E. Tata, Workability of Ti-6Al-4V alloy at high temperatures and strain rates, Mater. Lett. 58 (2004) 3622-3629.

DOI: 10.1016/j.matlet.2004.06.058

Google Scholar

[10] Y.V.R.K. Prasad, S. Sasidhara, Hot working guide: a compendium processing maps, ASM International, Materials park, OH (1997) 25-157.

Google Scholar

[11] S.F. Liu, M.Q. Li, J. Luo and Z. Yang, Deformation behavior in the isothermal compression of Ti-5Al-5Mo-5V-1Cr-1Fe alloy, Mater. Sci. Eng. A. 589 (2014) 15-22.

DOI: 10.1016/j.msea.2013.09.066

Google Scholar

[12] T. Seshacharyulu, S.C. Medeiros, W.G. Frazier and Y.V.R.K. Prasad, Hot working of commercial Ti-6Al-4V with an equiaxed α-β microstructure: materials modeling considerations, Mater. Sci. Eng. A. 284 (2000) 184-194.

DOI: 10.1016/s0921-5093(00)00741-3

Google Scholar

[13] X.Y. Zhang, M.Q. Li, H. Li, J. Luo, S.B. Su and H. Wang, Deformation behavior in isothermal compression of the TC11 titanium alloy, Mater. Des. 31 (2010) 2851-2857.

DOI: 10.1016/j.matdes.2009.12.051

Google Scholar