[1]
Huang Xu, Cao Chunxiao, Ma jimin, et al, Titanium Combustion in Aeroengines and Fire-Resistant Titanium Alloys, Journal of Materials Engineering. 1997, (8): 11-15.
Google Scholar
[2]
Fu Yangyang, Song Yueqing, Hui Songxiao, et al, Research and Application of Typical Aerospace Titanium Alloys, Chinese Journal of Rare Metals. 2006, 30(6): 850-856.
Google Scholar
[3]
Lai Yunjin, Zhang Pingxiang, Xin Shewei, et al, Research Progress on Engineered Technology of Burn-resistant Titanium Alloys in China, Rare Metal Materials and Engineering. 2015, 44(8): 2067-2073.
Google Scholar
[4]
Mi GuangBao, Huang Xu, Cao Jingxia, et al, Microstructure Characteristics of Burning Products of Ti-V-Cr Fireproof Titanium Alloy by Frictional Ignition, Acta Physical Sinica. 2016, 65(5): 056103.
DOI: 10.7498/aps.65.056103
Google Scholar
[5]
Mi Guangbao, Huang Xu, Cao Jingxia, et al, Ignition Resistance Preformance and Its Theoreticalanalysis of Ti-V-Cr Type Fireproof Titanium Alloys, Acta Metallurgica Sinica. 2014, 50(5): 575-586.
Google Scholar
[6]
Mi Guangbao, Huang Xu, Cao Jingxia, et al, Frictional Ignition of Ti40 Fireproof Titanium Alloys for Aero-engine in Oxygen-containing Media, Transactions of Nonferrous Metals society of china. 2013, (23): 2270-2275.
DOI: 10.1016/s1003-6326(13)62728-4
Google Scholar
[7]
Mi Guangbao, Cao Chunxiao, Huang Xu, et al, Non-isothermal Oxidation Characteristic and Fireproof Property Prediction of Ti-V-Cr Type Fireproof Titanium Alloy, Journal of Materials Engineering. 2016, 44(1): 1-10.
Google Scholar
[8]
Mi Guangbao, Huang Xiusong, Li Peijie, et al, Non-isothermal Oxidation and Ignition Prediction of Ti−Cr Alloys Transactions of Nonferrous Metals society of china. 2012, (22): 2409-2415.
DOI: 10.1016/s1003-6326(11)61478-7
Google Scholar
[9]
Huang Xu, Cao Chunxiao, Ma Jimin, et al, High Temperature Oxidation Behavior of a Fire- Resistant Titanium Alloy, Rare Metal Materials and Engineering. 1997, 26(6): 27-30.
Google Scholar
[10]
Mi Guangbao, Huang Xu, Cao Jingxia, et al, Experimental Technique of Titanium Fire in Aero-engine, Journal of Aeronautical Materials. 2016, 36(3): 20-26.
Google Scholar
[11]
Cao Jing-xia, Huang Xu, Mi Guangbao, et al, Research Progress on Application Technique of Ti-V-Cr Burn Resistant Titanium Alloys, Journal of Aeronautical Materials. 2014, 34(4): 92-97.
Google Scholar
[12]
Zhao Yongqing, Zhao Xiangmiao, Zhu Kangying, Burn Resistant Characteristics and microstructures of Ti-Cu-Al Alloy, Rare Metal Materials and Engineering. 1998, 27(6): 360-362.
Google Scholar
[13]
Zhao Yongqing, Ma Xuedan, Wu Weilu, et al, Research on Semi-solid Oxidation and Semi-solid Deformation of Ti14 Alloy, Rare Metal Materials and Engineering. 2003, 32(11): 885-888.
DOI: 10.1016/s1875-5372(12)60040-x
Google Scholar
[14]
Wang Bao, Huang Xu, Gao Yang, et al, Developments of Fireproof Titanium Alloy, Journal of Materials Engineering. 1998, (1): 30-32.
Google Scholar
[15]
W. Kai, P.C. Kao, W.S. Chen, et al, The oxidation behavior of a Ti50Cu28Ni15Sn7 bulk metallic glass at 400-500◦C, Journal of Alloys and Compounds. 2010, (504S): S180-S185.
DOI: 10.1016/j.jallcom.2010.04.128
Google Scholar
[16]
Spassov.I, Neykov.N, Jung.W, High-temperature oxidation of Cu-Ti-based rapidly solidified alloys, Zeitschrift fur Metallkunde. 2003, 94(2): 134-138.
DOI: 10.3139/146.030134
Google Scholar
[17]
P.Kofstad, P.B. Anderson, O.J. Krudtaa, Oxidation of titanium in the temperature range 800-1200℃, Journal of the Less Common Metals. 1961, 3(2): 89-97.
DOI: 10.1016/0022-5088(61)90001-7
Google Scholar
[18]
Zhu Linggang, Hu Qingmiao, Yang rui, et al, Atomic-Scale Modeling of the Dynamics of Titanium Oxidation, J. Phys. Chem. C. 2012, 116(45): 24201-24205.
DOI: 10.1021/jp309305n
Google Scholar
[19]
Sung Hyun Parka, Ka Ram Limb, Min Young Na, et al, Oxidation behavior of Ti–Cu binary metallic glass, Corrosion Science. 2015, (99): 304-312.
DOI: 10.1016/j.corsci.2015.07.027
Google Scholar
[20]
Xin li, Wang Wen, Introduction to High-Temperature Oxidation of Metals, Beijing: Higher Education Press. 2010: 65-68.
Google Scholar