[1]
Boyer R R. Titanium for aerospace: rationale and applications[J]. Advanced Performance Materials, 1995, 2: 349-368.
Google Scholar
[2]
Banerjee D, Williams J C. Perspectives on titanium science and technology[J]. Acta Material, 2013, 61: 844-879.
Google Scholar
[3]
Cao C X. Challenges of Chinese Aviation titanium alloy in the 21st century[J].Titanium Industry Progress, 1999, 5: 1−5.
Google Scholar
[4]
Williams J C. Alternate materials choices—some challenges to the increased use of Ti alloys[J]. Materials Science and Engineering, 1999, 263(2): 107–111.
DOI: 10.1016/s0921-5093(98)01179-4
Google Scholar
[5]
Zhu Z S, Shang G Q, Wang X N, Fei Y, Li J. Research and development of low cost and high performance titanium alloys[J]. Titanium Industry Progress, 2012, 29(16): 1-5.
Google Scholar
[6]
Wang X N, Fei Y, Liu Z, Shang G Q, Li J, Zhu L W, Zhu Z S. Research of the relationship between microstructure and damage-tolerance property of new low cost titanium alloy in aviation applications[J]. Titanium Industry Progress, 2013, 30(2): 7-10.
Google Scholar
[7]
Li M B, Zhu Z S, Wang X N, Zhu L W, Fei Y, Shang G Q. The influence of microstructure on high cycle fatigue properties of TC32 titanium alloy[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(9): 1886-1892.
Google Scholar
[8]
Zhu Z S, Ma S J, Wang X N, Tong L, Wu X R, Zhao Y Q, Qu H L. Study on fatigue crack propagation rate of TC4-DT damage tolerance titanium alloy[J]. Titanium Industry Progress, 2005, 22(6): 10-13.
Google Scholar
[9]
Ravichandran K S. Near threshold fatigue crack growth behavior of a titanium alloy: Ti-6Al-4V[J]. Acta Metallurgica et Materialia, 1991, 39(3): 401-410.
DOI: 10.1016/0956-7151(91)90319-v
Google Scholar
[10]
Sinha V, Soboyejo W O. An investigation of the effects of colony microstructure on fatigue crack growth in Ti-6Al-4V[J]. Materials Science and Engineering A, 2001, 319-321: 607-612.
DOI: 10.1016/s0921-5093(01)01014-0
Google Scholar
[11]
Shademan S, Sinha V, Soboyejo A B O, Soboyjejo W O. An investigation of the effects of microstructure and stress ratio on fatigue crack growth in Ti-6Al-4V with colony α/β microstructures[J]. Mechanics of Materials, 2004, 36(1): 161-175.
DOI: 10.1016/s0167-6636(03)00037-1
Google Scholar
[12]
Zhu Z S, Wang Q R, Zheng Y L. AVIC Beijing Institute of Aeronautical Materials, State Intellectual Property Office of the P.R.C., Patent number, ZL011312378, (2004).
Google Scholar
[13]
Zheng Y L, Zhu Z S, Zhang H, Wang Q R, Yu H Q, Sha A X. The application study of titanium alloy quasi-βforging processing[J]. Modern Machinery, 2008: 8-9.
Google Scholar
[14]
Zhu Z S. Research and development of new-brand titanium alloys of high performance for aeronautical applications[M]. Beijing: Aviation Industry Press, (2013).
Google Scholar
[15]
G. Lütjering, Williams J C. Titanium[M]. 2ed. Berlin: Springer-Verlag, (2007).
Google Scholar
[16]
G. Lütjering. Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys[J]. Materials Science and Engineering A. 1998, 243: 32-45.
DOI: 10.1016/s0921-5093(97)00778-8
Google Scholar
[17]
V. sinha, C. Mercer, W. O. Soboyejo. An investigation of short and long fatigue crack growth behavior of Ti-6Al-V[J]. Materials Science and Engineering A. 2000, 287: 30-42.
DOI: 10.1016/s0921-5093(00)00817-0
Google Scholar
[18]
Ravichandran K S. Fatigue crack closure as influenced as microstructure in Ti-6Al-4V[J]. Scripta Metallurgica Et Materiala, 1990, 24(8): 1559-1563.
DOI: 10.1016/0956-716x(90)90432-g
Google Scholar
[19]
Zhu L W, Wang X N, Zhu Z S, Liu D L, Yu H Q. Near-threshold fatigue crack propagation behavior of TC4-DT damage tolerance titanium alloys[J]. Rare Metal Materials and Engineering, 2014, 43(6): 1342-1346.
Google Scholar
[20]
Krüger L, Grundmann N, Trubitz P. Influence of microstructure and stress ratio on fatigue crack growth in a Ti-6-22-22-S alloy[J]. Materials Today: Proceedings, 2015, 2S: S205-S211.
DOI: 10.1016/j.matpr.2015.05.011
Google Scholar