[1]
D.A. Ford, R.P. Arthey, Development of single crystal alloys for specific engine applications, Superalloys1984, Seven springs, PA: TMS, 1984: 115-124.
DOI: 10.7449/1984/superalloys_1984_115_124
Google Scholar
[2]
T. Khan, P. Caron, Development of a new single crystal superalloy for industrial gas turbine blades, High temperature materials for power engineering, Liege, Belgium, 1990: 1261-1270.
Google Scholar
[3]
P. Caron, D. Comu, T. Khan, Development of a hydrogen resistant superalloy for single crystal blade application in rocket engine turbopumps, Superalloys1996, PA: TMS, 1996: 53-60.
DOI: 10.7449/1996/superalloys_1996_53_60
Google Scholar
[4]
S. Walston, A. Cetel, R. MacKay, Joint development of a fourth generation single crystal superalloy, Superalloy2004, Seven springs, PA: TMS, 2004: 15-24.
DOI: 10.7449/2004/superalloys_2004_15_24
Google Scholar
[5]
W. Schneide, J. Hammer, H. Mughrabi, Creep deformation and rupture behavior to the monocrystalline superalloy, Superalloys1992, Seven springs, PA: TMS, 1992: 589-598.
Google Scholar
[6]
F.R.N. Nabarro, The superiority of superalloys, Mater. Sci. Eng. 184 (1994) 167-171.
Google Scholar
[7]
W.R. Walston, U.S. Patent 5,270,123. (1993).
Google Scholar
[8]
C.M. Auslin, U.S. Patent 5,151,249. (1992).
Google Scholar
[9]
J.J. Jackson, M.J. Domachie, R.J. Henrich, The volume percent of fine γ' on creep in Mar-M200+Hf, Metall Trans. 8A (1977) 1615-1618.
Google Scholar
[10]
M. Gell, D.N. Duhl, A.F. Giamei, The development of single crystal superalloy turbine blades, Superalloys1980, PA: TMS, 1980: 205-214.
DOI: 10.7449/1980/superalloys_1980_205_214
Google Scholar
[11]
M.J. Goulette, The future costsless-high temperature materials form an aeroengineer prospective, Superalloys1996, Seven springs, PA: TMS, 1996: 3-6.
Google Scholar
[12]
K. Harris, G.L. Erickson, U.S. Patent 4, 582, 548. (1986).
Google Scholar
[13]
E.W. Ross, K.S. O'Hara, RenéN4: a first generation single crystal turbine airfoil alloy with improved oxidation resistance, low angle boundary strength and superior long time rupture strength, Superalloys1996, Seven spring, PA: TMS, 1996: 19-25.
DOI: 10.7449/1996/superalloys_1996_19_25
Google Scholar
[14]
T. Khan, Recent developments and potential of single crystal superalloys for advanced turbine blades, High Temepature Alloys for Gas Turbines and Other Applications 1986, D. Reidel Publishing Company, Dordrecht, Holland, 1986: 21-50.
Google Scholar
[15]
G.L. Erickson, The development of the CMSX-11 alloy for industrial gas turbine application, Superalloys1996, Seven springs, PA: TMS, 1996: 45-52.
Google Scholar
[16]
A.D. Cetel, D.N. Duhl, Second generation nickel-base single crystal superalloy, Superalloys1988, Seven springs, PA: TMS, 1988: 235-244.
DOI: 10.7449/1988/superalloys_1988_235_244
Google Scholar
[17]
K. Harris, G.L. Erickson, U.S. Patent 4, 634, 782. (1987).
Google Scholar
[18]
C.S. Wukusick, L. Buchakjian, U.K. Patent 2, 235, 697. (1991).
Google Scholar
[19]
X. Nguyen-Dinh, U.S. Patent 4,935,072. (1990).
Google Scholar
[20]
G.L. Erickson, The development and application of CMSX-10, Superalloys1996, Seven springs, PA: TMS, 1996: 35-44.
Google Scholar
[21]
W.S. Walston, K.S. O'Hara, E.W. Ross, RenéN6-third generation single crystal superalloy, Superalloys1996, Seven springs, PA: TMS, 1996: 27-34.
Google Scholar
[22]
J.R. Li, D.Z. Tang, R.L. Lao, Effects of rhenium on creep rupture life of a single crystal superalloys, J. Mat. Sci. & Tech. 15 (1999) 53-57.
Google Scholar
[23]
N. Saunders, Z. Guo, X. Li, Using JMatPro to model materials properties and behavior, J. Met. 55 (2003) 60-65.
Google Scholar