[1]
M. N. Oğuztöreli, D. Mangeron, Cr atom diffusion in tribolayer T10 steel induced by dry sliding against 20CrMnTi steel, Appl. Surf. Sci., 270 (2013) 145-149.
DOI: 10.1016/j.apsusc.2012.12.147
Google Scholar
[2]
X. Wang, X. Wei, X. Hong, J. Yang, W. Wang, Formation of sliding friction-induced deformation layer with nanocrystalline structure in T10 steel against 20CrMnTi steel, Appl. Surf. Sci., 280 (2013) 381-387.
DOI: 10.1016/j.apsusc.2013.04.165
Google Scholar
[3]
X. Wang, X. Wei, X. Yang, Z. Cheng, W. Wang, Atomic diffusion of gradient ultrafine structured surface layer produced by T10 steel rubbing against 20CrMnTi steel, Wear, 304 (2013) 118-125.
DOI: 10.1016/j.wear.2013.04.034
Google Scholar
[4]
F. Qin, W. Feng, S. Wu, Microstructure and vickers-hardness of 20CrMnTiH steel during hot compression testing, Ironmaking & Steelmaking., 59 (2017) 1-7.
DOI: 10.1080/03019233.2017.1297003
Google Scholar
[5]
W. Feng, F. Qin, H. Long, Hot workability analysis and processing parameters optimisation for 20CrMnTiH steel by combining processing map with microstructure, Ironmaking & Steelmaking., 37 (2016) 1-8.
DOI: 10.1080/03019233.2016.1264145
Google Scholar
[6]
S.T. Wu, W. Feng, X. Hu, Constitutive modelling of flow behaviour of 20CrMnTiH steel, Ironmaking & Steelmaking, 42 (2014) 481-488.
DOI: 10.1179/1743281214y.0000000248
Google Scholar
[7]
Z.J. Xie, C.J. Shang, S.V. Subramanian, X.P. Ma, R.D.K. Misra, Atom probe tomography and numerical study of austenite stabilization in a low carbon low alloy steel processed by two-step intercritical heat treatment, Scr. Mater., 137 (2017) 36-40.
DOI: 10.1016/j.scriptamat.2017.05.002
Google Scholar
[8]
M. Kubota, Y. Kobayashi, K. Ushioda, J. Takahashi, Effects of alloying elements on static recrystallization behavior of work-hardened austenite of high carbon low alloy steel, Mater. Trans., 58 (2017) 186-195.
DOI: 10.2320/matertrans.m2016343
Google Scholar
[9]
E.P.D. Silva, W. Xu, C. Föjer, Y. Houbaert, J. Sietsma, Phase transformations during the decomposition of austenite below M s, in a low-carbon steel, Mater. Charact., 95 (2014) 85-93.
DOI: 10.1016/j.matchar.2014.06.003
Google Scholar
[10]
N. Takayama, G.Miyamoto, T. Furuhara, Chemistry and three-dimensional morphology of martensite-austenite constituent in the bainite structure of low-carbon low-alloy steels, Acta Mater., 58 (2017) 78-86.
DOI: 10.1016/j.actamat.2017.11.036
Google Scholar
[11]
A.S. Aghdam, S.R. Allahkaram, S. Mahdavi, Corrosion and tribological behavior of Ni–Cr alloy coatings electrodeposited on low carbon steel in Cr (III)–Ni (II) bath, Surf. Coat. Technol., 281 (2015) 144-149.
DOI: 10.1016/j.surfcoat.2015.10.006
Google Scholar
[12]
M. Szkodo, Influence of laser processing of the low alloy medium carbon structural steel on the development of the fatigue crack, Surf. Coat. Technol., 296 (2016) 117-123.
DOI: 10.1016/j.surfcoat.2016.04.032
Google Scholar
[13]
L. Lan, C. Qiu, H. Song, D. Zhao, Correlation of martensite–austenite constituent and cleavage crack initiation in welding heat affected zone of low carbon bainitic steel, Mater. Lett., 125 (2014) 86-88.
DOI: 10.1016/j.matlet.2014.03.123
Google Scholar
[14]
X. Zhang, S. Yang, W. Zhang, H. Guo, X. He, Influence of outer rust layers on corrosion of carbon steel and weathering steel during wet–dry cycles, Corros. Sci., 82 (2014) 165-172.
DOI: 10.1016/j.corsci.2014.01.016
Google Scholar
[15]
X. Yu, Z. Jiang, J. Zhao. D. Wei, C. Zhou, Microstructure and microtexture evolutions of deformed oxide layers on a hot-rolled microalloyed steel, Corros. Sci., 90 (2015) 140-152.
DOI: 10.1016/j.corsci.2014.10.005
Google Scholar
[16]
Q.S. Wu, S.H. Zheng, Q.Y. Huang, S.J. Liu, Y.Y. Han. Continuous cooling transformation behaviors of CLAM steel, J. Nucl. Mater., 442 (2013) S67-S70.
DOI: 10.1016/j.jnucmat.2013.03.072
Google Scholar
[17]
C.J. Hamelin, O. Muránsky, M.C. Smith, T.M. Holden, V. Luzin, Validation of a numerical model used to predict phase distribution and residual stress in ferritic steel weldments, Acta Mater., 75 (2014) 1-19.
DOI: 10.1016/j.actamat.2014.04.045
Google Scholar
[18]
G. Mandal, S.K. Ghosh, S.Mukherjee, Phase transformation and mechanical behaviour of thermo -mechanically controlled processed high-strength multiphase steel, J. Mater. Sci., 51 (2016) 6569-6582.
DOI: 10.1007/s10853-016-9852-4
Google Scholar
[19]
E.V. Pereloma, A.G. Kostryzhev, A. lshahrani, C. Zhu, J.M. Cairney, Effect of austenite deformation temperature on Nb clustering and precipitation in microalloyed steel, Scr. Mater., 75 (2014) 74-77.
DOI: 10.1016/j.scriptamat.2013.11.026
Google Scholar
[20]
Z.H. Cai, H. Ding, R.D.K. Misra, Z.Y. Ying, Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content., Scr. Mater., 84 (2015) 229-236.
DOI: 10.1016/j.actamat.2014.10.052
Google Scholar
[21]
N. Haghdadi, P. Cizek, H. Beladi, P.D. Hodgson, The austenite microstructure evolution in a duplex stainless steel subjected to hot deformation, Philos. Mag., 97 (2017) 1209-1237.
DOI: 10.1080/14786435.2017.1293860
Google Scholar
[22]
T.R. Bieler, P. Eisenlohr, F. Roters, D.Kumar, D.E. Mason, Int. J. Plast., 25 (2009) 1655-1683.
Google Scholar
[23]
T.M. Maccagno, J.J. Jonas, P.D. Hodgson, Spreadsheet modelling of grain size evolution during rod rolling, ISIJ Int., 36 (1996) 720-8.
DOI: 10.2355/isijinternational.36.720
Google Scholar
[24]
A. Kumar, C. Mcculloch, E.B. Hawbolt, I.V. Samarasekera, Modelling thermal and microstructural evolution on runout table of hot strip mill, Mater. Sci. Technol., 7 (1991) 360-8.
DOI: 10.1179/mst.1991.7.4.360
Google Scholar
[25]
G. Niu, Y.l. CHEN, X. WANG, Effects of chromium, vanadium and austenite deformation on transformation behaviors of high-strength spring steels, J. Iron. Steel Res. Int., 23 (2016) 1323-1332.
DOI: 10.1016/s1006-706x(16)30195-9
Google Scholar
[26]
X.U. Jin-Qiao, Y.Z. Liu, S.M. Zhou. Computer simulation of microstructure evolution of 82B rod at different cooling rates, J. Iron. Steel Res. Int., 15 (2008) 56-59.
DOI: 10.1016/s1006-706x(08)60032-1
Google Scholar
[27]
X. Chen, N. Xiao, D. Li, G. Li, G. Sun, The finite element analysis of austenite decomposition during continuous cooling in 22MnB5 steel, Modell. Simul. Mater. Sci. Eng., 22 (2014) 564-571.
DOI: 10.1088/0965-0393/22/6/065005
Google Scholar