[1]
W.O. Binder, The influence of chromium on the mechanical properties of plain steels, Trans. ASM. 43 (1951) 759.
Google Scholar
[2]
H. Yan, H. Bi, X. Li, Z. Xu., Microstructure and texture of Nb+Ti stabilized ferritic stainless steel, Mater Character. (2008) 1741-1746.
DOI: 10.1016/j.matchar.2008.03.018
Google Scholar
[3]
V. Kuzucu, M. Aksoy, M.H. Korkut, The Effect of Niobium on the microstructure of ferritic stainless steel mater. Sci. Eng., 230 A (1997) 75.
DOI: 10.1016/s0921-5093(97)00010-5
Google Scholar
[4]
J.L. Cavazos, Characterization of precipitates formed in a ferritic stainless steel stabilized with Zr and Ti additions, Mater Character. 56 (2006) 96.
DOI: 10.1016/j.matchar.2005.05.006
Google Scholar
[5]
Y. Shan, X. Luo, X. Hu, et al., Mechanisms of solidification structure improvement of ultra pure 17 wt% Cr ferritic stainless steel by Ti, Nb addition, Journal of Material Science and Technology 27 (2011) 352-358.
DOI: 10.1016/s1005-0302(11)60073-x
Google Scholar
[6]
P.J. Hyun, K.D. SIK, L.S. Beom, Inclusion control of ferritic stainless steel by aluminium deoxidation and calcium treatment, Metallurgical and Materials Transactions B, 36 (2005) 67-73.
DOI: 10.1007/s11663-005-0007-2
Google Scholar
[7]
L. Liao, R.J. Fruehan, Thermodynamics of Ti, Al and Incision Formation in Stainless Steel and Nickel Alloys, Iron and steelmaker, 10 (1989) 91-97.
Google Scholar
[8]
H. Matsuura, C. Wang, G. Wen, et a1., The transient stages of inclusion evolution during A1 and/or Ti additions to molten iron, ISIJ International, 47 (2007) 1265-1274.
DOI: 10.2355/isijinternational.47.1265
Google Scholar
[9]
R. Maddalena, R. Rastogi, B EI-Dasher., et al. Nozzle Deposits in Titanium Treated Stainless Steels, 57th Electric Furnace conference Proceedings, Iron and steels society AIME (2000) 811-831.
Google Scholar
[10]
G. Scoczylas, A. Dusgupta, Characterization of the chemical interactions during the casting of high-titanium low-carbon enamelling steels, Continuous Casting, 7 (1995) 197-207.
Google Scholar
[11]
Y. Yazawa, Y. Kato, M. Kobayashi, Development of Ti-bearing high performance ferritic stainless steels R430XT and RSX-1, Kawasaki Steel Technical Report. 40 (1999) 23-29.
Google Scholar
[12]
J. Hamada, Y. Matsumoto, F. Fudanoki, et a1. Effect of initial solidified structure on ridging phenomenon and texture in type 430 ferritic stainless steel sheets, ISIJ International. 43 (2003), 1989-1998.
DOI: 10.2355/isijinternational.43.1989
Google Scholar
[13]
N. Fujita, H.K.D.H. Bhadeshia, Modelling simultaneous alloy carbide sequence in power plant steels, ISIJ International. 42 (2002) 760-769.
DOI: 10.2355/isijinternational.42.760
Google Scholar
[14]
S. VoB, M. Palm, F. Stein, D. Raabe, Phase Equilibria in the Fe-Nb System, Journal of Phase Equilibria and Diffusion, 32 (2011) 97-104.
DOI: 10.1007/s11669-010-9808-3
Google Scholar
[15]
A. Jacob, C. Schmetterer, A. Khvan, el at., Liquidus projection and thermodynamic modelling of the Cr-Fe-Nb ternary system, Computer Coupling of Phase Diagrams and Thermo chemistry. 54 (2016) 1-15.
DOI: 10.1016/j.calphad.2016.04.013
Google Scholar
[16]
H. Liu, Z. Liu, Y. Qiu, et a1. Characterization of the solidification structure and texture development of ferritic stainless steel produced by twin-roll strip casting, Materials Characterization. 60 (2009) 79-82.
DOI: 10.1016/j.matchar.2008.06.005
Google Scholar
[17]
F. Haddad, S. E. Amarta, R. Kesrl., Liquidus surface projection of the Fe-Nb-C system in the iron-rich corner, Metallurgical and Materials Transactions A. 29 (2008) 1026-1033.
DOI: 10.1007/s11661-008-9483-8
Google Scholar
[18]
S. Yu. K. Ev, Ekaterina V. Sviatysheva, el at., Fragmented structure of niobium carbide particles in as-cast modified HP all, Acta Materialia. 127 (2017) 267-276.
DOI: 10.1016/j.actamat.2017.01.043
Google Scholar