Effect of SiC Additions on Microstructure Evolution and Mechanical Properties of W-Based Composite Prepared by Arc-Melting

Article Preview

Abstract:

In this study, the W-Si-C multi-phase composites were fabricated by an arc melting method. With addition of SiC, the grain size of W is obviously reduced, and the small angle misorientation becomes dominate, which is beneficial for the improvement of deformability. The effects of SiC additions (from 0.5 to 3wt%) on the microstructure and mechanical properties are mainly investigated. With 1 wt% SiC addition, the flexural strength reaches the highest value. The self-generation of W5Si3 may enhance the strength and ductility, but too much W5Si3 exists as brittle BP (Brittle to Plastic) microstructure. The highest flexural strength is obtained at approximately 1 vol% W5Si3.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

531-536

Citation:

Online since:

January 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Lee, M.A. Umer, Y. Shin, S. Jeon, S. Hong, The effect of sintering conditions and ZrN volume fraction on the mechanical properties of spark plasma sintered W/ZrN composites, Mater. Sci. Eng. A 552 (2012) 481-485.

DOI: 10.1016/j.msea.2012.05.073

Google Scholar

[2] Z. Xie, R.liu, S. Miao, X. Yang, T. Zhang, X. Wang, Q. Fang, C. Liu, G. Luo, Y. Lian, X. Liu, Extraordinary high ductility/strength of the interface designed bulk W-ZrC alloy plate at relatively low temperature, Sci. Rep. 5 (2015) 1-10.

DOI: 10.1038/srep16014

Google Scholar

[3] L. Kecskes , K. Cho, R. Dowding, B. Schuster , R. Valiev, Q. Wei, Grain size engineering of bcc refractory metals: top-down and bottom-up - application to tungsten, Mater. Sci. Eng. A 467(2007) 33-43.

DOI: 10.1016/j.msea.2007.02.099

Google Scholar

[4] P. Gumbsch, J. Riedle, A. Hartmaier, H. Fischmeister, Controlling factors for the Brittle-to-Ductile Transition in Tungsten Single Crystals, Science, 282(1998) 1293-1295.

DOI: 10.1126/science.282.5392.1293

Google Scholar

[5] Q. Wei, H. Zhang, B. Schuster, K. Ramesh, R. Valiev, L. Kecskes, R. Dowding, L. Magness, K. Cho, Microstructure and mechanical properties of super-strong nanocrystalline tungsten processed by high-pressure torsion, Acta Mater. 54(2006) 4079-4089.

DOI: 10.1016/j.actamat.2006.05.005

Google Scholar

[6] Q. Wei, H. Zhang, B. Schuster, K. Ramesh, R. Valiev, L. Kecskes, R. Dowding, L. Magness, K. Cho, Microstructure and mechanical properties of super-strong nanocrystalline tungsten processed by high-pressure torsion, Acta Mater. 54(2006) 4079-4089.

DOI: 10.1016/j.actamat.2006.05.005

Google Scholar

[7] Y. Wang, H. Peng, Y. Zhou, G. Song, Influence of ZrC content on the elevated temperature tensile properties of ZrCp/W composites, Mater. Sci. Eng. A 528 (2011) 1805-1811.

DOI: 10.1016/j.msea.2010.11.029

Google Scholar

[8] M. Mabuchi, K. Okamoto, N. Saito, T. Asahina, T. Igarashi, Deformation behavior and strengthening mechanisms at intermediate temperatures in W-La2O3, Mater. Sci. Eng. A 237 (1997) 241-249.

DOI: 10.1016/s0921-5093(97)00420-6

Google Scholar

[9] I. Wesemann, W. Spielmann, P. Heel, A. Hoffmann, Fracture strength and microstructure of ODS tungsten alloys, Int. J. Refract. Met. Hard Mater. 28 (2010) 687-691.

DOI: 10.1016/j.ijrmhm.2010.05.009

Google Scholar

[10] D. Lee, M. Umer, H. Ryu, S. Hong, The effect of HfC content on mechanical properties HfC-W composites, Int. J. Refract. Met. Hard Mater. 44 (2014) 49-53.

DOI: 10.1016/j.ijrmhm.2014.01.012

Google Scholar

[11] G. Song, Y. Wang, Y. Zhou, Thermomechanical properties of TiC particle-reinforced tungsten composites for high temperature applications, Int. J. Refract. Met. Hard Mater. 21 (2003) 1-12.

DOI: 10.1016/s0263-4368(02)00105-1

Google Scholar

[12] H. Ren, X. Liu, J. Ning, Microstructure and mechanical properties of W-Zr reactive materials, Mater. Sci. Eng. A 660 (2016) 205-212.

Google Scholar

[13] D. Lee, H. Park, H. Ryu, S. Jeon, S. Hong, Microstructure and mechanical properties of SiC-nanowire-augmented tungsten composites, J. Alloy. Compd. 509 (2011) 9060-9064.

DOI: 10.1016/j.jallcom.2011.06.005

Google Scholar

[14] S. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. 45(1954) 823-843.

DOI: 10.1080/14786440808520496

Google Scholar

[15] X. Tao, P. Jund, C. Colinet, J. Tedenac, First-principles study of the structural, electronic and elastic properties of W5Si3, Intermetallics 18 (2010) 688-693.

DOI: 10.1016/j.intermet.2009.11.008

Google Scholar

[16] Y. Ma, Q. Han, Z. Zhou Y. Liu, First-principles investigation on mechanical behaviors of W-Cr/Ti binary alloys, J. Nucl. Mater. 468 (2016) 105-112.

DOI: 10.1016/j.jnucmat.2015.10.018

Google Scholar

[17] B. Gludovatz, S. Wurster, T. Weingartner, A. Hoffmann, R. Pippan, Influence of Impurities on the Fracture Behaviour of Tungsten, Philos. Mag. 91 (2011) 3006–3020.

DOI: 10.1080/14786435.2011.558861

Google Scholar

[18] Y. Hu, A. Lieser, A. Saengdeejing, Z. Liu, L. Kecskes, Glass formability of W-based alloys through thermodynamic modeling: W-Fe-Hf-Pd-Ta and W-Fe-Si-C, Intermetallics 48 (2014) 79-85.

DOI: 10.1016/j.intermet.2013.10.010

Google Scholar

[19] K. Kang, L. Zhang, G. Luo, J. Zhang, R. Tu, C. Wu, Q. Shen, Microstructure evolution and mechanical behavior of W-Si-C multi-phase composite prepared by arc-melting, Mater. Sci. Eng. A 712 (2018) 28-36.

DOI: 10.1016/j.msea.2017.11.028

Google Scholar

[20] A. Mukhopadhyay, S. Datta, D. Chakraborty, Fracture toughness of structural ceramics, Ceram. Int. 5(1999): 447-454.

DOI: 10.1016/s0272-8842(98)00056-x

Google Scholar

[21] D. Shi. Fundamentals of materials science. China Machine press Co., Ltd, China, 2003: 347.

Google Scholar

[22] L. Kecskes, K. Cho, R. Dowding, B. Schuster, R. Valiev, Q. Wei, Grain size engineering of bcc refractory metals: Top-down and bottom-up—Application to tungsten, Mater. Sci. Eng. A 467(2007) 33-43.

DOI: 10.1016/j.msea.2007.02.099

Google Scholar