Continuous Fabrication of Temperature-Responsive Hydrogel Fibers with Bilayer Structure by Microfluidic Spinning

Article Preview

Abstract:

Temperature-responsive hydrogel fibers with bilayer structure were prepared by a microfluidic spinning device with a Y-shaped connector. The bilayer hydrogel fibers include two layer with different chemical composition. One layer is the ionic crosslinking hydrogel of calcium alginate (CA) and the other layer is temperature-responsive hydrogel which is semi-interpenetrating polymer networks (semi-IPN) of linear poly (N-isopropylacrylamide) (PNIPAM) and CA. The bilayer hydrogel fibers were evaluated by morphology observation, tensile stress measurement, temperature-responsive actuation test and equilibrium swelling ratio test. The results show that the prepared hydrogel fibers have obvious double layer structure with different porous structures. The bilayer hydrogel fibers can bend in water at 50 °C and the bending rate is influenced by the diameter of the fiber. Moreover, the diameter of the hydrogel fibers can be controlled by changing the flow rates of spinning fluids.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

543-548

Citation:

Online since:

January 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Liu, Y.; Zhang, K.; Ma, J.; Vancso, G. J., Thermoresponsive Semi-IPN Hydrogel Microfibers from Continuous Fluidic Processing with High Elasticity and Fast Actuation. ACS Applied Materials & Interfaces. 2017, 9 (1), 901-908.

DOI: 10.1021/acsami.6b13097

Google Scholar

[2] Zhang, S.; Bellinger, A. M.; Glettig, D. L.; Barman, R.; Lee, Y.-A. L.; Zhu, J.; Cleveland, C.; Montgomery, V. A.; Gu, L.; Nash, L. D.; Maitland, D. J.; Langer, R.; Traverso, G., A pH-responsive supramolecular polymer gel as an enteric elastomer for use in gastric devices. Nat. Mater. 2015, 14, 1065.

DOI: 10.1038/nmat4355

Google Scholar

[3] Peng, L.; Liu, Y.; Gong, J.; Zhang, K.; Ma, J., Continuous fabrication of multi-stimuli responsive graphene oxide composite hydrogel fibres by microfluidics. RSC Advances. 2017, 7 (31), 19243-19249.

DOI: 10.1039/c7ra01750b

Google Scholar

[4] Heo, Y. J.; Shibata, H.; Okitsu, T.; Kawanishi, T.; Takeuchi, S., Long-term in vivo glucose monitoring using fluorescent hydrogel fibers. Proceedings of the National Academy of Sciences of the United States of America. 2011, 108 (33), 13399-13403.

DOI: 10.1073/pnas.1104954108

Google Scholar

[5] Yuan Ma, Y.; Ting Liu, H.; Hong Ma, J.; Hua Gong, J., Glucose-Responsive Hydrogels Based on Phenylboronic Acid. 2018, 913, 714-721.

DOI: 10.4028/www.scientific.net/msf.913.714

Google Scholar

[6] Zhang, E. Z.; Wang, T.; Hong, W.; Sun, W. X.; Liu, X. X.; Tong, Z., Infrared-driving actuation based on bilayer graphene oxide-poly(N-isopropylacrylamide) nanocomposite hydrogels. Journal of Materials Chemistry A. 2014, 2 (37), 15633-15639.

DOI: 10.1039/c4ta02866j

Google Scholar

[7] Nakajima, S.; Kawano, R.; Onoe, H., Stimuli-responsive hydrogel microfibers with controlled anisotropic shrinkage and cross-sectional geometries. Soft Matter. 2017, 13 (20), 3710-3719.

DOI: 10.1039/c7sm00279c

Google Scholar

[8] Cheng, Y.; Zheng, F. Y.; Lu, J.; Shang, L. R.; Xie, Z. Y.; Zhao, Y. J.; Chen, Y. P.; Gu, Z. Z., Bioinspired Multicompartmental Microfibers from Microfluidics. Adv. Mater. 2014, 26 (30), 5184-5190.

DOI: 10.1002/adma.201400798

Google Scholar

[9] Asoh, T. A.; Matsusaki, M.; Kaneko, T.; Akashi, M., Fabrication of temperature-responsive bending hydrogels with a nanostructured gradient. Adv. Mater. 2008, 20 (11), (2080).

DOI: 10.1002/adma.200702727

Google Scholar

[10] Zhang, H.; Zhai, D.; He, Y., Graphene oxide/polyacrylamide/carboxymethyl cellulose sodium nanocomposite hydrogel with enhanced mechanical strength: preparation, characterization and the swelling behavior. RSC Advances. 2014, 4 (84), 44600-44609.

DOI: 10.1039/c4ra07576e

Google Scholar

[11] Huai‐Ping, C.; Ping, W.; Shu‐Hong, Y., Highly Elastic and Superstretchable Graphene Oxide/Polyacrylamide Hydrogels. Small. 2014, 10 (3), 448-453.

DOI: 10.1002/smll.201301591

Google Scholar

[12] Jeong, W.; Kim, J.; Kim, S.; Lee, S.; Mensing, G.; Beebe, D. J., Hydrodynamic microfabrication via on the fly', photopolymerization of microscale fibers and tubes. Lab on A Chip. 2004, 4 (6), 576-580.

DOI: 10.1039/b411249k

Google Scholar

[13] Tanaka, T.; Fillmore, D. J., Kinetics of swelling of gels. The Journal of Chemical Physics. 1979, 70 (3), 1214-1218.

DOI: 10.1063/1.437602

Google Scholar