[1]
Liu, Y.; Zhang, K.; Ma, J.; Vancso, G. J., Thermoresponsive Semi-IPN Hydrogel Microfibers from Continuous Fluidic Processing with High Elasticity and Fast Actuation. ACS Applied Materials & Interfaces. 2017, 9 (1), 901-908.
DOI: 10.1021/acsami.6b13097
Google Scholar
[2]
Zhang, S.; Bellinger, A. M.; Glettig, D. L.; Barman, R.; Lee, Y.-A. L.; Zhu, J.; Cleveland, C.; Montgomery, V. A.; Gu, L.; Nash, L. D.; Maitland, D. J.; Langer, R.; Traverso, G., A pH-responsive supramolecular polymer gel as an enteric elastomer for use in gastric devices. Nat. Mater. 2015, 14, 1065.
DOI: 10.1038/nmat4355
Google Scholar
[3]
Peng, L.; Liu, Y.; Gong, J.; Zhang, K.; Ma, J., Continuous fabrication of multi-stimuli responsive graphene oxide composite hydrogel fibres by microfluidics. RSC Advances. 2017, 7 (31), 19243-19249.
DOI: 10.1039/c7ra01750b
Google Scholar
[4]
Heo, Y. J.; Shibata, H.; Okitsu, T.; Kawanishi, T.; Takeuchi, S., Long-term in vivo glucose monitoring using fluorescent hydrogel fibers. Proceedings of the National Academy of Sciences of the United States of America. 2011, 108 (33), 13399-13403.
DOI: 10.1073/pnas.1104954108
Google Scholar
[5]
Yuan Ma, Y.; Ting Liu, H.; Hong Ma, J.; Hua Gong, J., Glucose-Responsive Hydrogels Based on Phenylboronic Acid. 2018, 913, 714-721.
DOI: 10.4028/www.scientific.net/msf.913.714
Google Scholar
[6]
Zhang, E. Z.; Wang, T.; Hong, W.; Sun, W. X.; Liu, X. X.; Tong, Z., Infrared-driving actuation based on bilayer graphene oxide-poly(N-isopropylacrylamide) nanocomposite hydrogels. Journal of Materials Chemistry A. 2014, 2 (37), 15633-15639.
DOI: 10.1039/c4ta02866j
Google Scholar
[7]
Nakajima, S.; Kawano, R.; Onoe, H., Stimuli-responsive hydrogel microfibers with controlled anisotropic shrinkage and cross-sectional geometries. Soft Matter. 2017, 13 (20), 3710-3719.
DOI: 10.1039/c7sm00279c
Google Scholar
[8]
Cheng, Y.; Zheng, F. Y.; Lu, J.; Shang, L. R.; Xie, Z. Y.; Zhao, Y. J.; Chen, Y. P.; Gu, Z. Z., Bioinspired Multicompartmental Microfibers from Microfluidics. Adv. Mater. 2014, 26 (30), 5184-5190.
DOI: 10.1002/adma.201400798
Google Scholar
[9]
Asoh, T. A.; Matsusaki, M.; Kaneko, T.; Akashi, M., Fabrication of temperature-responsive bending hydrogels with a nanostructured gradient. Adv. Mater. 2008, 20 (11), (2080).
DOI: 10.1002/adma.200702727
Google Scholar
[10]
Zhang, H.; Zhai, D.; He, Y., Graphene oxide/polyacrylamide/carboxymethyl cellulose sodium nanocomposite hydrogel with enhanced mechanical strength: preparation, characterization and the swelling behavior. RSC Advances. 2014, 4 (84), 44600-44609.
DOI: 10.1039/c4ra07576e
Google Scholar
[11]
Huai‐Ping, C.; Ping, W.; Shu‐Hong, Y., Highly Elastic and Superstretchable Graphene Oxide/Polyacrylamide Hydrogels. Small. 2014, 10 (3), 448-453.
DOI: 10.1002/smll.201301591
Google Scholar
[12]
Jeong, W.; Kim, J.; Kim, S.; Lee, S.; Mensing, G.; Beebe, D. J., Hydrodynamic microfabrication via on the fly', photopolymerization of microscale fibers and tubes. Lab on A Chip. 2004, 4 (6), 576-580.
DOI: 10.1039/b411249k
Google Scholar
[13]
Tanaka, T.; Fillmore, D. J., Kinetics of swelling of gels. The Journal of Chemical Physics. 1979, 70 (3), 1214-1218.
DOI: 10.1063/1.437602
Google Scholar