[1]
S. Ganta, H. Devalapally, A. Shahiwala, M. Amiji, A review of stimuli-responsive nanocarriers for drug and gene delivery, Journal of Controlled Release. 126 (2008) 187-204.
DOI: 10.1016/j.jconrel.2007.12.017
Google Scholar
[2]
W.C. de Vries, D. Grill, M. Tesch, A. Ricker, H. Nuesse, J. Klingauf, A. Studer, V. Gerke, B.J. Ravoo, Reversible Stabilization of Vesicles: Redox-Responsive Polymer Nanocontainers for Intracellular Delivery, Angewandte Chemie-International Edition. 56 (2017) 9603-9607.
DOI: 10.1002/anie.201702620
Google Scholar
[3]
H. Jin, Y. Li, Z. Gao, Research Progress of Nanoparticle Carriers and Their Biological Effects, Chinese Pharmaceutical Journal. 52 (2017) 814-818.
Google Scholar
[4]
M.Y. Marzbali, A.Y. Khosroushahi, Polymeric micelles as mighty nanocarriers for cancer gene therapy: a review, Cancer Chemotherapy and Pharmacology. 79 (2017) 637-649.
DOI: 10.1007/s00280-017-3273-1
Google Scholar
[5]
Z. Cao, H. Wu, J. Dong, G. Wang, Quadruple-Stimuli-Sensitive Polymeric Nanocarriers for Controlled Release under Combined Stimulation, Macromolecules. 47 (2014) 8777-8783.
DOI: 10.1021/ma502003v
Google Scholar
[6]
Y. Li, K. Xiao, W. Zhu, W. Deng, K.S. Lam, Stimuli-responsive cross-linked micelles for on-demand drug delivery against cancers, Advanced Drug Delivery Reviews. 66 (2014) 58-73.
DOI: 10.1016/j.addr.2013.09.008
Google Scholar
[7]
Y. Shao, W. Huang, C. Shi, S.T. Atkinson, J. Luo, Reversibly crosslinked nanocarriers for on-demand drug delivery in cancer treatment, Therapeutic delivery. 3 (2012) 1409-27.
DOI: 10.4155/tde.12.106
Google Scholar
[8]
Y. Wu, W. Chen, F. Meng, Z. Wang, R. Cheng, C. Deng, H. Liu, Z. Zhong, Core-crosslinked pH-sensitive degradable micelles: A promising approach to resolve the extracellular stability versus intracellular drug release dilemma, Journal of Controlled Release. 164 (2012) 338-345.
DOI: 10.1016/j.jconrel.2012.07.011
Google Scholar
[9]
J.V.M. Weaver, Y.Q. Tang, S.Y. Liu, P.D. Iddon, R. Grigg, N.C. Billingham, S.P. Armes, R. Hunter, S.P. Rannard, Preparation of shell cross-linked micelles by polyelectrolyte complexation, Angewandte Chemie-International Edition. 43 (2004) 1389-1392.
DOI: 10.1002/anie.200352428
Google Scholar
[10]
Y. Li, K. Xiao, J. Luo, W. Xiao, J.S. Lee, A.M. Gonik, J. Kato, T.A. Dong, K.S. Lam, Well-defined, reversible disulfide cross-linked micelles for on-demand paclitaxel delivery, Biomaterials. 32 (2011) 6633-6645.
DOI: 10.1016/j.biomaterials.2011.05.050
Google Scholar
[11]
C. Wang, J. Wang, X. Chen, X. Zheng, Z. Xie, L. Chen, X. Chen, Phenylboronic Acid-Cross-Linked Nanoparticles with Improved Stability as Dual Acid-Responsive Drug Carriers, Macromolecular Bioscience. 17 (2017).
DOI: 10.1002/mabi.201600227
Google Scholar
[12]
S.J. Lee, K.H. Min, H.J. Lee, A.N. Koo, H.P. Rim, B.J. Jeon, S.Y. Jeong, J.S. Heo, S.C. Lee, Ketal Cross-Linked Poly (ethylene glycol)-Poly (amino acid)s Copolymer Micelles for Efficient Intracellular Delivery of Doxorubicin, Biomacromolecules. 12 (2011) 1224-1233.
DOI: 10.1021/bm101517x
Google Scholar
[13]
Y. Li, W. Xiao, K. Xiao, L. Berti, J. Luo, H.P. Tseng, G. Fung, K.S. Lam, Well-Defined, Reversible Boronate Crosslinked Nanocarriers for Targeted Drug Delivery in Response to Acidic pH Values and cis-Diols, Angewandte Chemie-International Edition. 51 (2012) 2864-2869.
DOI: 10.1002/anie.201107144
Google Scholar
[14]
J. Ren, Y. Zhang, J. Zhang, H. Gao, G. Liu, R. Ma, Y. An, D. Kong, L. Shi, pH/Sugar Dual Responsive Core-Cross-Linked PIC Micelles for Enhanced Intracellular Protein Delivery, Biomacromolecules. 14 (2013) 3434-3443.
DOI: 10.1021/bm4007387
Google Scholar
[15]
R. Narain, S.P. Armes, Synthesis and aqueous solution properties of novel sugar methacrylate-based homopolymers and block copolymers, Biomacromolecules. 4 (2003) 1746-1758.
DOI: 10.1021/bm034166e
Google Scholar