The Bending Behavior of Porous Titanium Manufactured Using a Novel Spherical Space Holder

Article Preview

Abstract:

Porous titanium of 10-65% porosity and 100-400 μm macro-pore size manufactured by adding spherical polymethyl methacrylate (PMMA) powders as pore makers. The bending strength of 21-453 MPa and shear modulus of 1.9-43 GPa were obtained. Increasing in porosity and macro-pore size, the bending strength and shear modulus reduced as described by theoretical model, and the macro-pores of porous titanium yielded a smaller deformation under bending.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

549-556

Citation:

Online since:

January 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Wang, Q.Y. Li, M.Q. Xu, G.F. Jiang, Y.X. Zhang, G.A. He, Novel approach to fabrication of three-dimensional porous titanium with controllable structure, Materials Science and Engineering C. 2017 (71) 1046-1051.

DOI: 10.1016/j.msec.2016.11.119

Google Scholar

[2] W. Prananingrum, Y. Tomotake, Y. Naito, J. Bae, K. Sekine, K. Hamada, T. Ichikawa, Application of porous titanium in prosthesis production using a moldless process: Evaluation of physical and mechanical properties with various particle sizes, shapes, and mixing ratios, Journal of the mechanical behavior of biomedical materials. 2016 (61) 581-589.

DOI: 10.1016/j.jmbbm.2016.04.021

Google Scholar

[3] B. Otsuki, M. Takemoto, S. Fujibayashi, M. Neo, T. Kokubo, T. Nakamura, Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants, Biomaterials. 2006 (27) 5892-5900.

DOI: 10.1016/j.biomaterials.2006.08.013

Google Scholar

[4] N. Taniguchi, S. Fujibayashi, M. Takemoto, K. Sasaki, B. Otsuki, T. Nakamura, T. Matsushita, T. Kokubo, S. Matsuda, Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment. Materials Science and Engineering C. 2016 (59) 690-701.

DOI: 10.1016/j.msec.2015.10.069

Google Scholar

[5] S. Fujibayashi, M. Neo, H.M. Kim, T. Kokubo, T. Nakamura, Osteoinduction of porous bioactive titanium metal, Biomaterials. 2004 (25) 443-450.

DOI: 10.1016/s0142-9612(03)00551-9

Google Scholar

[6] H.C. Jiang, H. Du, H.M. Xie, L.J. Rong, Investigation on the micro-deformation characteristics of porous NiTi shape memory alloy using SEM moirѐ method. Acta Metallurgica Sinica. 2006 (42) 1153-1157.

Google Scholar

[7] I.-H. Oh, N. Nomura, N. Masahashi, S. Hanada, Mechanical properties of porous titanium compacts prepared by powder sintering, Scripta Materialia. 2003 (49) 1197-1202.

DOI: 10.1016/j.scriptamat.2003.08.018

Google Scholar

[8] Z. Esen, S. Bor, Processing of titanium foams using magnesium spacer particles, Scripta Materialia. 2007 (56) 341-344.

DOI: 10.1016/j.scriptamat.2006.11.010

Google Scholar

[9] C.M. Zou, E.L. Zhang, M.W. Li, S.Y. Zeng, Preparation, microstructure and mechanical properties of porous titanium sintered by Ti fibres, Journal of Materials Science - Materials in Medicine. 2008 (19) 401-405.

DOI: 10.1007/s10856-006-0103-0

Google Scholar

[10] E.D. Spoerke, N. G. D. Murray, H. Li, L.C. Brinson, D.C. Dunand, S.I. Stupp, J. Biomed, Titanium with aligned, elongated pores for orthopedic tissue engineering applications, Journal of Biomedical Materials Research. 2008 ( 84) A 402-412.

DOI: 10.1002/jbm.a.31317

Google Scholar

[11] H. Shen, S.M. Oppenheimer, D.C. Dunand, L.C. Brinson, Numerical modeling of pore size and distribution in foamed titanium, Mechanics of Materials. 2006 (38) 933-944.

DOI: 10.1016/j.mechmat.2005.06.027

Google Scholar

[12] H. Shen, L.C. Brinson, Finite element modeling of porous titanium. International Journal of Solids and Structures. 2007 (44) 320-335.

DOI: 10.1016/j.ijsolstr.2006.04.020

Google Scholar

[13] H. Shen, H.Li, L.C. Brinson, Effect of microstructural configurations on the mechanical responses of porous titanium: A numerical design of experiment analysis for orthopedic applications, Mechanics of Materials. 2008 (40) 708-720.

DOI: 10.1016/j.mechmat.2008.03.009

Google Scholar

[14] H.L. Li, S.M. Oppenheimer, S.I. Stupp, D.C. Dunand, L.C. Brinson, Effects of pore morphology and bone ingrowth on mechanical properties of microporous titanium as an orthopaedic implant material, Materials Transactions. 2004 (45) 1124-1131.

DOI: 10.2320/matertrans.45.1124

Google Scholar

[15] B.Q. Li, F.Yan, X.Lu, Effect of microstructure on the tensile property of porous Ti produced by powder metallurgy technique, Materials Science and Engineering C. 2012 (534) 43-52.

DOI: 10.1016/j.msea.2011.11.028

Google Scholar

[16] B.Q. Li, C.Y. Wang, X. Lu, Effect of pore structure on the compressive property of porous Ti produced by powder metallurgy technique, Materials and Design. 2013 (50) 613-619.

DOI: 10.1016/j.matdes.2013.02.082

Google Scholar

[17] GB232-88, Metal bending test method.

Google Scholar

[18] B.Q. Li, X.Lu, The effect of pore structure on the electrical conductivity of Ti. Transport in Porous Media. 2011 (87) 179-189.

DOI: 10.1007/s11242-010-9674-9

Google Scholar

[19] L.J. Gibson, M.F. Ashby, Cellular solids: structure and properties, 2nd ed, Cambridge, (1997).

Google Scholar

[20] T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metallurgica. 1973 (21) 571-574.

DOI: 10.1016/0001-6160(73)90064-3

Google Scholar

[21] T. Traini, C. Mangano, R.L. Sammons, F. Mangano, A. Macchi, A. Piattelli, Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants, Dental Materials. 2008 (24) 1525-1533.

DOI: 10.1016/j.dental.2008.03.029

Google Scholar

[22] P.S. Liu, K.M. Liang, S.R. Gu, X.S. Wang, The exponential item in formulas for calculating tensile strength of porous metal, Chinese Journal of Theoretical and Applied Mechanics. 2001 (33) 853-855.

Google Scholar