[1]
S. M. Walley. Historical review of high strain rate and shock properties of ceramics relevant to their application in armou, Adv. Appl. Ceram. 109 (2010) 446-466.
DOI: 10.1179/174367609x422180
Google Scholar
[2]
E. Medvedovski, Alumina ceramics for ballistic protection, Am. Ceram. Soc. Bull. 81 (2002) 27-32.
Google Scholar
[3]
R. Klement, S. Rolc, R. Mikulikova, et al. Transparent armour materials, J. Eur. Ceram. Soc. 28 (2008) 1091-1095.
DOI: 10.1016/j.jeurceramsoc.2007.09.036
Google Scholar
[4]
K. Sujirote, K. Dateraksa, N. Chollacoop, Some practical requirements for alumina armor systems, Am. Ceram. Soc. Bull. 86 (2007) 71-89.
DOI: 10.1002/9780470339695.ch6
Google Scholar
[5]
E. Straßburger, Ballistic testing of transparent armour ceramics, J. Eur. Ceram. Soc. 29 (2009) 267-273.
Google Scholar
[6]
R. Chi, A. Serjouei, I. Sridhar, et al. Pre-stress effect on confined ceramic armor ballistic performance, Int. J. Impact. Eng. 84 (2015) 159-170.
DOI: 10.1016/j.ijimpeng.2015.05.011
Google Scholar
[7]
S. N. Monteiro, L. H. L. Louro, A. V. Gomes, et al. How effective is a convex Al2O3-Nb2O5, ceramic armor? Ceram. Int. 42 (2016) 7844-7847.
DOI: 10.1016/j.ceramint.2015.12.147
Google Scholar
[8]
X. Jin, K. Cai, W. Liu, et al. Effects of monomer content on internal stresses during solidification process and properties of green bodies by gelcasting, J. Chi. Ceram. Soc. 39 (2011) 794-798.
Google Scholar
[9]
K. Byung-Nam. New ceramic ready to take the strain; Kim Byung-Nam details the development of a high-strain-rate superplastic ceramic that has practical application in shape forming processes, Chem. Commun. 48 (2012) 2906-2908.
Google Scholar
[10]
L.C. Tang, Z. F. Liu, J. Z. Chang, et al. Dynamic behaviors of alumina ceramic under high pressure and high strain-rate, J. Funct. Mater. 39 (2008) 261.
Google Scholar
[11]
K. Morita, K. Hiraga, Y. Sakka High-strain-rate superplasticity in Y2O3-stabilized tetragonal ZrO2 dispersed with 30 vol% MgAl2O4 Spinel, J. Am. Ceram. Soc. 85 (2010) 1900-1902.
DOI: 10.1111/j.1151-2916.2002.tb00377.x
Google Scholar
[12]
Jr. C. E. Anderson, B. L. Morris, The ballistic performance of confined Al2O3, ceramic tiles, Int. J. Impact Eng. 12 (1992) 167-187.
DOI: 10.1016/0734-743x(92)90395-a
Google Scholar
[13]
N. Xu, W. W. Chen, S. Xin, et al. Dynamic failure of borosilicate glass under compression/shear loading experiments, J. Am. Ceram. Soc. 90 (2007) 2556–2562.
DOI: 10.1111/j.1551-2916.2007.01819.x
Google Scholar
[14]
H. Luo, W. Chen, Dynamic compressive response of intact and damaged AD995 alumina, Int. J. Appl. Ceram. Tec. 1 (2004) 254-260.
DOI: 10.1111/j.1744-7402.2004.tb00177.x
Google Scholar
[15]
G. Subhash, S. Maiti, P. H. Geubelle, et al. Recent advances in dynamic indentation fracture, impact damage and fragmentation of ceramics, J. Am. Ceram. Soc. 91 (2008) 2777–2791.
DOI: 10.1111/j.1551-2916.2008.02624.x
Google Scholar
[16]
W. W. Chen, A. M. Rajendran, B. Song, et al. Dynamic fracture of ceramics in armor applications, J. Am. Ceram. Soc. 90 (2010) 1005-1018.
Google Scholar