[1]
M. Zhang, G.Y. Zu, G.C. Yao, Bending properties of novel Aluminum foam sandwich panels, The Chinese Journal of Process Engineering, 7(3) (2007) 628-631.
Google Scholar
[2]
F.J. Yang, W.C. Lu, X.Y. He, Effect of core thickness and cell structure on flexural behavious of closed-cell aluminum foam sandwich beams, Journal of Southeast University (Natural Science Edition), 43(5) (2013) 1045-1049.
Google Scholar
[3]
N.N. Chen, Y. Feng, J. Chen, et al, Vacuum brazing processes of aluminum foam, Rare metal materials and engineering, 42(6) (2013) 1118-1122.
DOI: 10.1016/s1875-5372(13)60072-7
Google Scholar
[4]
G.W. Zhang, Y.F. Bao, Y.F. Jiang, et al, Microstructure and mechanical properties of 6063 aluminum alloy brazed joints with Al-Si-Cu-Ni-RE filler metal, Journal of Materials Engineering and Performance, 20(8) (2011) 1451-1456.
DOI: 10.1007/s11665-010-9802-2
Google Scholar
[5]
S.S. Wang, M.D. Cheng, L.C. Tsao, et al, Corrosion behaviors of Al-Si-Cu(Sn, Zn) brazing filler metals,Materials Characterization, 47(5) (2001) 401-409.
DOI: 10.1016/s1044-5803(02)00188-2
Google Scholar
[6]
H.Wang, D.P. He, X.M. Chu, et al, Interface structure of N2-shielded furnace brazing of Al foam and its mechanical properties, Transaction Of The China Welding Institution, 29 (10) (2008) 1-4.
Google Scholar
[7]
K J. Matthes, H. Lang, Brazing of aluminum foam with cellular fillermatals, Cellular Metals and Metals Foaming Technology. Bremen: Verlag MIT Publishing, (2001) 501-504.
Google Scholar
[8]
J H. Li, Research on brazing process and the property of Aluminum foam, Tianjin: Hebei University of Technology, (2015).
Google Scholar
[9]
N N. Chen, Research on vacuum brazing and contact reactive brazing of aluminum foam, Hefei: Hefei University of Technology, (2012).
Google Scholar
[10]
G.F. Zhang, J.X. Zhang, S.Y. Wang, et al, Similarities and differences in main characteristics between transient liquid phase bonding and brazing process, Transaction Of The China Welding Institution, 23(6) (2002) 92-93.
Google Scholar
[11]
W.F. Gale, D.A. Butts, Transient liquid phase bonding. science and technology of welding & joining, 9(4) (2004) 283-300.
DOI: 10.1179/136217104225021724
Google Scholar
[12]
Wang Xuegang. Microstructure and properties of Cu-Al dissimilar joint by transient liquid phase bonding, Jinan: Shandong University, (2015).
Google Scholar
[13]
W.H. Liu, TLP diffusion bonding of aluminum-based metal matrix composite, Changchun: Jilin University, (2004).
Google Scholar
[14]
Y.F. Song, Preparation, microstructure and mechanical properties of Al foam and Al foam sandwich panels, Changsha: Central South University, (2014).
Google Scholar
[15]
W.M. Zhang, X.M. Qiu, X.W. Chen, et al, Microstructure and mechanical property of transient liquid phase bonded Aluminum silicon alloy joint, Transaction Of The China Welding Institution, 30(2) (2009) 121-124.
Google Scholar
[16]
S.J. Guo, S.J. Chen, F. Liang, Effect of bonding pressure on transient liquid phase bonding process and joint properties of T91/12Cr2MoWVTiB, Hot Working Technology, 38(15) (2009) 95-97.
DOI: 10.4028/www.scientific.net/amr.97-101.107
Google Scholar
[17]
S.S.S. Afghahi, A. Ekrami, S. Farahany, et al, Effect of bonding parameters on microstructure development during TGTLP bonding of Al7075 alloy, Philosophical Magazine, 94(11) (2014) 1166-1176.
DOI: 10.1080/14786435.2014.885132
Google Scholar
[18]
R.K. Saha, T.I. Khan, Effect of bonding variables on TLP bonding of oxide dispersion strengthened superalloy, Journal of Materials Science, 42(22) (2007) 9187-9193.
DOI: 10.1007/s10853-007-1922-1
Google Scholar