Activation Process and Mechanism of ZrCoCe Getter Films

Article Preview

Abstract:

In order to study the activation process and mechanism of ZrCoCe, highly porous ZrCoCe getter films were grown by the DC magnetron sputtering method. The effect of activation temperature on the surface composition of the porous ZrCoCe getter films were studied by X-ray photoelectron spectroscopy (XPS). The results shows that the surface of air-exposed porous ZrCoCe film is covered with H2O, CO2 and hydrocarbons, both Zr and Ce exist in the oxidized state, and zirconium oxide starts to reduce at 300 °C. The activation process also results in a sizable Co segregation at surface. In addition, zirconium carbide can be found in the subsurface region of the film after thermal activation treatment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

613-618

Citation:

Online since:

January 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.F. Jin, Z.F. Wang, L. Zhao, P.C. Lim, J. Wei and C.K. Wong, Zr/V/Fe thick film for vacuum packaging of MEMS, J. Micromech. Microeng. 14 (2004) 687-692.

DOI: 10.1088/0960-1317/14/5/005

Google Scholar

[2] F. Sutara, I. Matolinova, T. Skala, Residual surface oxide on ZrV getter-XPS, LEIS and SIMS study, Vacuum. 74 (2004) 305-309.

DOI: 10.1016/j.vacuum.2003.12.144

Google Scholar

[3] V. Matolin, J. Drbohlav, K. Masek, Mechanism of non-evaporable getter activation XPS and static SIMS study of Zr44V56 alloy, Vacuum. 71 (2003) 317-322.

DOI: 10.1016/s0042-207x(02)00756-x

Google Scholar

[4] V. Matolin, K. Masek, I. Matolinova, XPS and SIMS study of the ageing mechanism of Zr-V non-evaporable getter films, Appl. Surf. Sci. 235 (2004) 202-206.

DOI: 10.1016/j.apsusc.2004.05.125

Google Scholar

[5] C. Benvenuti, P. Chiggiato, P.C. Pinto, Influence of the substrate coating temperature on the vacuum properties of Ti-Zr-V non-evaporable getter films, Vacuum. 71(1-2) (2003) 307-315.

DOI: 10.1016/s0042-207x(02)00755-8

Google Scholar

[6] P. Chiggiato, P.C. Pinto, Ti-Zr-V non-evaporable getter films: From development to large scale production for the Large Hadron Collider, Thin Solid Films. 515 (2006) 382-388.

DOI: 10.1016/j.tsf.2005.12.218

Google Scholar

[7] C.C. Li, J.L. Huang, R.J. Lin, Characterization of activated non-evaporable porous Ti and Ti-Zr-V getter films by synchrotron radiation photoemission spectroscopy, Thin Solid Films. 515 (2006) 1121-1125.

DOI: 10.1016/j.tsf.2006.07.052

Google Scholar

[8] C.C. Li, J.L. Huang, R.J. Lin, Preparation and characterization of non-evaporable porous Ti-Zr-V getter films, Surf. Coat. Technol. 201 (2006) 3977-3981.

DOI: 10.1016/j.surfcoat.2006.08.018

Google Scholar

[9] C.C. Li, J.L. Huang, R.J. Lin, Activation characterization of non-evaporable Ti-Zr-V getter films by synchrotron radiation photoemission spectroscopy, Thin Solid Films. 517 (2009) 5876-5880.

DOI: 10.1016/j.tsf.2007.06.102

Google Scholar

[10] Y.H. Xu, J.D. Cui, H. Cui, ZrCoCe Getter Films for MEMS Vacuum Packaging, J. Electron. Mater. 45 (2016) 386-390.

DOI: 10.1007/s11664-015-4098-5

Google Scholar

[11] T.B. Zhang, M. Zhang, R. Hu, Hydrogen absorption behavior of a Pd-coated Zr70Fe5.4V24.6 getter material against gaseous impurities, Vacuum. 122 (2015) 222-229.

DOI: 10.1016/j.vacuum.2015.10.007

Google Scholar

[12] J.G. Bu, C.H. Mao, Y. Zhang, Preparation and sorption characteristics of Zr-Co-RE getter films, J Alloy Compd. 529 (2012) 69-72.

DOI: 10.1016/j.jallcom.2012.01.030

Google Scholar

[13] D. Petti, M. Cantoni, M. Leonea, Activation of Zr-Co-rare earth getter films: An XPS study, Appl. Surf. Sci. 256 (2010) 6291-6296.

DOI: 10.1016/j.apsusc.2010.04.006

Google Scholar