[1]
A.S. Apaleke, A. Al-Majed, M.E. Hossain, Drilling fluid: state of the art and future trend, SPE149555 (2012).
DOI: 10.2118/149555-ms
Google Scholar
[2]
O. Contreras, G. Hareland, M. Husein, Wellbore strengthening in sandstones by means of nanoparticle-based drilling fluids, SPE170263 (2014).
DOI: 10.2118/170263-ms
Google Scholar
[3]
F. Chen, J. Xiong, X. Kuang, F. Hou, Latest study of the application of nanotechnology in oil field, Applied Chemical Industry, 39 (8) (2010) 1227-1230.
Google Scholar
[4]
S. Zhu, J. Zhang, J. Shi, R. Zhao, M. Liu, Y. Shu, The prospect of application of nanometer material in oil exploitation, Advanced Materials Research, 490-495 (2012) 3802-3806.
DOI: 10.4028/www.scientific.net/amr.490-495.3802
Google Scholar
[5]
X. Bai, X. Pu, The performance of PMMA nano-latex in drilling fluids, Drilling Fluid & Completion Fluid, 27 (1) (2010) 8-10.
Google Scholar
[6]
C. Matteo, P. Candido, R. Vera, V. Francesca, Current and future nanotech applications in the oil industry, Am. J. App. Sci., 9 (6) (2012) 784-793.
Google Scholar
[7]
J. Yin, X. Zhao, Titanate nano-whisker electrorheological fluid with high suspended stability and ER activity, Nanotechnology, 17 (2006) 192-196.
DOI: 10.1088/0957-4484/17/1/031
Google Scholar
[8]
W. Peukert, General concepts in nanoparticle technology and their possible implication on cultural science and philosophy, Powder Tech., 158 (2005) 133-140.
DOI: 10.1016/j.powtec.2005.04.024
Google Scholar
[9]
F. Pelissari, M. Andrade-Mahecha, P. Sobral, F. Menegalli, Nanocomposites based on banana starch reinforced with cellulose nanofibers isolated from banana peels, J. Colloid Interface Sci., 505 (2017) 154-167.
DOI: 10.1016/j.jcis.2017.05.106
Google Scholar
[10]
J. Gong, L. Mo, J. Li, A comparative study on the preparation and characterization of cellulose nanocrystals with various polymorphs, Carbohydr. Polym., 195 (2018) 18-28.
DOI: 10.1016/j.carbpol.2018.04.039
Google Scholar
[11]
H. Yano. Production of cellulose nanofibers and their applications, Annals of the High Perform. Paper Society, Japan, 49 (2010) 15-20.
Google Scholar
[12]
N. Duran, A. Lemes, A. Seabra, Review of cellulose nanocrystals patents: preparation, composites and general applications, Recent Pat. Nanotech., 6 (2012) 16-28.
DOI: 10.2174/187221012798109255
Google Scholar
[13]
P. Samyn, G. Schoukens, J. Quintelier, P. De Baets, Friction, wear and material transfer of sintered polyimides sliding against various steel and diamond-like carbon coated surfaces, Tribol. Int., 39 (2005) 575-589.
DOI: 10.1016/j.triboint.2005.07.029
Google Scholar
[14]
E. Dekempeneer, K. Van Acker, K. Vercammen, J. Meneve, D. Neerinck, S. Eufinger, W. Pappaert, M. Sercu, J. Smeets, Abrasion resistant low friction diamond-like multilayers, Surf. Coat. Technol., 142 (2001) 669-673.
DOI: 10.1016/s0257-8972(01)01141-0
Google Scholar
[15]
L. Cui, Z. Lu, L. Wang, Toward low friction in high vacuum for hydrogenated diamondlike carbon by tailoring sliding interface, ACS Appl. Mater. Interfaces, 5 (2013) 5889-5893.
DOI: 10.1021/am401192u
Google Scholar
[16]
L. Cui, Z. Lu, L. Wang, Probing the low-friction mechanism of diamond-like carbon by varying of sliding velocity and vacuum pressure, Carbon, 66 (2014) 259-266.
DOI: 10.1016/j.carbon.2013.08.065
Google Scholar