[1]
N. Yamazoe, N. Miura, Some basic aspects of semiconductor gas sensors, Chem. Sens. Technol. (1992) 19-42.
DOI: 10.1016/b978-0-444-98680-1.50007-3
Google Scholar
[2]
A. Kolmakov, Y. Zhang, G. Cheng, M. Moskovits, Detection of CO and O2using tin oxide Nanowire Sensors, Adv. Mater. 15 (2010) 997-1000.
DOI: 10.1002/adma.200304889
Google Scholar
[3]
L.M. Cukrov, P.G. Mccormick, K. Galatsis, W. Wlodarski, Gas sensing properties of nanosized tin oxide synthesised by mechanochemical processing, Sens. Actuators B: Chem. 77 (2001) 491-495.
DOI: 10.1016/s0925-4005(01)00751-1
Google Scholar
[4]
A. Tiburcio-Silver, A. Sánchez-Juárez, SnO2:Ga thin films as oxygen gas sensor, Mater. Sci. Eng. B110 (2004) 268-271.
DOI: 10.1016/j.mseb.2004.02.013
Google Scholar
[5]
S.W. Choi, J.Y. Park, S.S. Kim, Synthesis of SnO2-ZnO core-shell nanofibers via a novel two-step process and their gas sensing properties, Nanotechnology. 20 (2009) 20135-20138.
DOI: 10.1088/0957-4484/20/46/465603
Google Scholar
[6]
J. Eriksson, V. Khranovskyy, F. Söderlind, P.O. Käll, R. Yakimova, A.L. Spetz, ZnO nanoparticles or ZnO films: A comparison of the gas sensing capabilities, Sens. Actuators B: Chem. 137 (2009) 94-102.
DOI: 10.1016/j.snb.2008.10.072
Google Scholar
[7]
N. Al, Low operating temperature of oxygen gas sensor based on undoped and Cr-doped ZnO films, Appl. Surf. Sci. 256 (2010) 3468-3471.
DOI: 10.1016/j.apsusc.2009.12.055
Google Scholar
[8]
K. Galatsis, Y.X. Li, W. Wlodarski, K. Kalantar-Zadeh, Sol-gel prepared MoO3-WO3 thin-films for O2 gas sensing, Sens. Actuators B: Chem. 77 (2001) 478-483.
DOI: 10.1016/s0925-4005(01)00738-9
Google Scholar
[9]
Z. Liu, T. Yamazaki, Y. Shen, T. Kikuta, N. Nakatani, Y. Li, O2 and CO sensing of Ga2O3 multiple nanowire gas sensors, Sens. Actuators B: Chem. 129 (2008) 666-670.
DOI: 10.1016/j.snb.2007.09.055
Google Scholar
[10]
A. Trinchi, Y.X. Li, W. Wlodarski, S. Kaciulis, L. Pandolfi, S. Viticoli, E. Comini, G. Sberveglieri, Investigation of sol-gel prepared CeO2-TiO2 thin films for oxygen gas sensing, Sens. Actuators B: Chem. 95 (2003) 145-150.
DOI: 10.1016/s0925-4005(03)00424-6
Google Scholar
[11]
E. Sotter, X. Vilanova, E. Llobet, A. Vasiliev, X. Correig, Thick film titania sensors for detecting traces of oxygen, Sens. Actuators B: Chem. 127 (2008) 567-579.
DOI: 10.1016/j.snb.2007.05.010
Google Scholar
[12]
Z. Han, J. Wang, L. Liao, H. Pan, S. Shen, J. Chen, Phosphorus doped TiO2 as oxygen sensor with low operating temperature and sensing mechanism, Appl. Surf. Sci. 273 (2013) 349-356.
DOI: 10.1016/j.apsusc.2013.02.041
Google Scholar
[13]
G. Neri, A. Bonavita, G. Micali, G. Rizzo, N. Pinna, M. Niederberger, In2O3 and Pt-In2O3 nanopowders for low temperature oxygen sensors, Sens. Actuators B: Chem. 127 (2007) 455-462.
DOI: 10.1016/j.snb.2007.04.046
Google Scholar
[14]
G. Neri, A. Bonavita, G. Micali, G. Rizzo, S. Galvagno, M. Niederberger, N. Pinna, A highly sensitive oxygen sensor operating at room temperature based on platinum-doped In2O3nanocrystals, Chem. Comm. 37 (2006) 6032-6034.
DOI: 10.1039/b510832b
Google Scholar
[15]
Y. Xiong, W. Lu, D. Ding, L. Zhu, X. Li, C. Ling, Q. Xue, Enhanced room temperature oxygen sensing properties of LaOCl-SnO2hollow spheres by UV light illumination, ACS Sensors. 2 (2017) 679.
DOI: 10.1021/acssensors.7b00129
Google Scholar
[16]
B.K. Dable, K.S. Booksh, R. Cavicchi, S. Semancik, Calibration of microhotplate conductometric gas sensors by non-linear multivariate regression methods, Sens. Actuators B: Chem. 101 (2004) 284-294.
DOI: 10.1016/j.snb.2004.03.003
Google Scholar
[17]
S. Nakata, H. Okunishi, Y. Nakashima, Distinction of gases with a semiconductor sensor depending on the scanning profile of a cyclic temperature, Analyst. 131 (2006) 148-154.
DOI: 10.1039/b509996j
Google Scholar
[18]
A. Fort, M. Gregorkiewitz, N. Machetti, S. Rocchi, B. Serrano, L. Tondi, N. Ulivieri, V. Vignoli, G. Faglia, E. Comini, Selectivity enhancement of SnO2 sensors by means of operating temperature modulation, Thin Solid Films. 418 (2002) 2-8.
DOI: 10.1016/s0040-6090(02)00575-8
Google Scholar
[19]
A.S. A Gramm, High performance solvent vapor identification with a two sensor array using temperature cycling and pattern classification, Sens. Actuators B: Chem. 95 (2003) 58-65.
DOI: 10.1016/s0925-4005(03)00404-0
Google Scholar
[20]
E. Strelcov, S. Dmitriev, B. Button, J. Cothren, V. Sysoev, A. Kolmakov, Evidence of the self-heating effect on surface reactivity and gas sensing of metal oxide nanowire chemiresistors, Nanotechnology. 19 (2008) 355502-355502.
DOI: 10.1088/0957-4484/19/35/355502
Google Scholar
[21]
J.D. Prades, R. Jimenez-Diaz, F. Hernandez-Ramirez, S. Barth, A. Cirera, A. Romano-Rodriguez, S. Mathur, J.R. Morante, Ultralow power consumption gas sensors based on self-heated individual nanowires, Appl. Phys. Lett. 93 (2008) 123110-123113.
DOI: 10.1063/1.2988265
Google Scholar
[22]
D. Wang, X. Chu, M. Gong, Gas-sensing properties of sensors based on single-crystalline SnO2 nanorods prepared by a simple molten-salt method, Sens. Actuators B: Chem. 117 (2006) 183-187.
DOI: 10.1016/j.snb.2005.11.022
Google Scholar
[23]
M.R. Yang, S.Y. Chu, R.C. Chang, Synthesis and study of the SnO2 nanowires growth, Sens. Actuators B: Chem. 122 (2007) 269-273.
Google Scholar
[24]
E. Comini, G. Faglia, G. Sberveglieri, D. Calestani, L. Zanotti, M. Zha, Tin oxide nanobelts electrical and sensing properties, Sens. Actuators B: Chem. 111-112 (2005) 2-6.
DOI: 10.1016/j.snb.2005.06.031
Google Scholar
[25]
J.Q. Hu, Y. Bando, D. Golberg, Self-catalyst growth and optical properties of novel SnO2fishbone-like nanoribbons, Chem. Phys. Lett. 372 (2003) 758-762.
DOI: 10.1016/s0009-2614(03)00503-7
Google Scholar
[26]
I.D. Kim, A. Rothschild, H.L. Tuller, Advances and new directions in gas-sensing devices, Acta Mater. 61 (2013) 974-1000.
DOI: 10.1016/j.actamat.2012.10.041
Google Scholar
[27]
Y. Xiong, Q. Xue, C. Ling, W. Lu, D. Ding, L. Zhu, X. Li, Effective CO2 detection based on LaOCl-doped SnO2 nanofibers: Insight into the role of oxygen in carrier gas, Sens. Actuators B: Chem. 241 (2017) 725-734.
DOI: 10.1016/j.snb.2016.10.143
Google Scholar
[28]
W. Wang, Z. Li, L. Liu, H. Zhang, W. Zheng, Y. Wang, H. Huang, Z. Wang, C. Wang, Humidity sensor based on LiCl-doped ZnO electrospun nanofibers, Sens. Actuators B: Chem. 141 (2009) 404-409.
DOI: 10.1016/j.snb.2009.06.029
Google Scholar
[29]
Y. Xiong, W. Xu, D. Ding, W. Lu, L. Zhu, Z. Zhu, Y. Wang, Q. Xue, Ultra-sensitive NH3 sensor based on flower-shaped SnS2 nanostructures with sub-ppm detection ability, J. Hazard. Mater. 341 (2017) 159.
DOI: 10.1016/j.jhazmat.2017.07.060
Google Scholar
[30]
Y. Xiong, Z. Zhu, T. Guo, H. Li, Q. Xue, Synthesis of nanowire bundle-like WO3-W18O49 heterostructures for highly sensitive NH3 sensor application, J. Hazard. Mater. 353 (2018) 290-299.
DOI: 10.1016/j.jhazmat.2018.04.020
Google Scholar
[31]
M. Schweizer-Berberich, S. Strathmann, U. Weimar, R. Sharma, A. Seube, A. Peyre-Lavigne, W. Göpel, Strategies to avoid VOC cross-sensitivity of SnO2-based CO sensors, Sens. Actuators B: Chem. 58 (1999) 318-324.
DOI: 10.1016/s0925-4005(99)00149-5
Google Scholar
[32]
N. Barsan, M. Schweizer-Berberich, W. Göpel, Fundamental and practical aspects in the design of nanoscaled SnO2gas sensors: A status report, Fresen. J. Anal. Chem. 365 (1998) 287-304.
DOI: 10.1007/s002160051490
Google Scholar
[33]
V. Lantto, P. Romppainen, Electrical studies on the reactions of CO with different oxygen species on SnO2 surfaces, Surf. Sci. Lett. 192 (1987) 243-264.
DOI: 10.1016/s0039-6028(87)81174-3
Google Scholar