A Strategy to Improve O2 Gas Response of La-SnO2 Nanofibers Based Sensor through Temperature Modulation

Article Preview

Abstract:

Generally sensing mechanisms of gas sensors based on metal-oxide semiconductors greatly depend on temperature, suggesting temperature modulation can be applied as a vital method to effectively enhance the sensor response. In this paper, we reported a strategy of quick-cooling operating temperature mode in the course of gas sensing process to elevate the O2 gas response while maintaining low heating energy consumption. La-SnO2 nanofibers synthesized by electrospinning were chosen as gas sensing materials. The O2 gas responses by employing quick-cooling operation mode are significantly improved compared with those obtained by traditional isothermal test. The improved O2 response is contributed to a higher coverage of negatively charged oxygen ions as a result of quick cooling. Our research offers a facile route to detect gas at low temperature with high response. More importantly, the strategy demonstrated here could also be extended to other gas sensor as long as its gas response is related to the sensor temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

657-665

Citation:

Online since:

January 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Yamazoe, N. Miura, Some basic aspects of semiconductor gas sensors, Chem. Sens. Technol. (1992) 19-42.

DOI: 10.1016/b978-0-444-98680-1.50007-3

Google Scholar

[2] A. Kolmakov, Y. Zhang, G. Cheng, M. Moskovits, Detection of CO and O2using tin oxide Nanowire Sensors, Adv. Mater. 15 (2010) 997-1000.

DOI: 10.1002/adma.200304889

Google Scholar

[3] L.M. Cukrov, P.G. Mccormick, K. Galatsis, W. Wlodarski, Gas sensing properties of nanosized tin oxide synthesised by mechanochemical processing, Sens. Actuators B: Chem. 77 (2001) 491-495.

DOI: 10.1016/s0925-4005(01)00751-1

Google Scholar

[4] A. Tiburcio-Silver, A. Sánchez-Juárez, SnO2:Ga thin films as oxygen gas sensor, Mater. Sci. Eng. B110 (2004) 268-271.

DOI: 10.1016/j.mseb.2004.02.013

Google Scholar

[5] S.W. Choi, J.Y. Park, S.S. Kim, Synthesis of SnO2-ZnO core-shell nanofibers via a novel two-step process and their gas sensing properties, Nanotechnology. 20 (2009) 20135-20138.

DOI: 10.1088/0957-4484/20/46/465603

Google Scholar

[6] J. Eriksson, V. Khranovskyy, F. Söderlind, P.O. Käll, R. Yakimova, A.L. Spetz, ZnO nanoparticles or ZnO films: A comparison of the gas sensing capabilities, Sens. Actuators B: Chem. 137 (2009) 94-102.

DOI: 10.1016/j.snb.2008.10.072

Google Scholar

[7] N. Al, Low operating temperature of oxygen gas sensor based on undoped and Cr-doped ZnO films, Appl. Surf. Sci. 256 (2010) 3468-3471.

DOI: 10.1016/j.apsusc.2009.12.055

Google Scholar

[8] K. Galatsis, Y.X. Li, W. Wlodarski, K. Kalantar-Zadeh, Sol-gel prepared MoO3-WO3 thin-films for O2 gas sensing, Sens. Actuators B: Chem. 77 (2001) 478-483.

DOI: 10.1016/s0925-4005(01)00738-9

Google Scholar

[9] Z. Liu, T. Yamazaki, Y. Shen, T. Kikuta, N. Nakatani, Y. Li, O2 and CO sensing of Ga2O3 multiple nanowire gas sensors, Sens. Actuators B: Chem. 129 (2008) 666-670.

DOI: 10.1016/j.snb.2007.09.055

Google Scholar

[10] A. Trinchi, Y.X. Li, W. Wlodarski, S. Kaciulis, L. Pandolfi, S. Viticoli, E. Comini, G. Sberveglieri, Investigation of sol-gel prepared CeO2-TiO2 thin films for oxygen gas sensing, Sens. Actuators B: Chem. 95 (2003) 145-150.

DOI: 10.1016/s0925-4005(03)00424-6

Google Scholar

[11] E. Sotter, X. Vilanova, E. Llobet, A. Vasiliev, X. Correig, Thick film titania sensors for detecting traces of oxygen, Sens. Actuators B: Chem. 127 (2008) 567-579.

DOI: 10.1016/j.snb.2007.05.010

Google Scholar

[12] Z. Han, J. Wang, L. Liao, H. Pan, S. Shen, J. Chen, Phosphorus doped TiO2 as oxygen sensor with low operating temperature and sensing mechanism, Appl. Surf. Sci. 273 (2013) 349-356.

DOI: 10.1016/j.apsusc.2013.02.041

Google Scholar

[13] G. Neri, A. Bonavita, G. Micali, G. Rizzo, N. Pinna, M. Niederberger, In2O3 and Pt-In2O3 nanopowders for low temperature oxygen sensors, Sens. Actuators B: Chem. 127 (2007) 455-462.

DOI: 10.1016/j.snb.2007.04.046

Google Scholar

[14] G. Neri, A. Bonavita, G. Micali, G. Rizzo, S. Galvagno, M. Niederberger, N. Pinna, A highly sensitive oxygen sensor operating at room temperature based on platinum-doped In2O3nanocrystals, Chem. Comm. 37 (2006) 6032-6034.

DOI: 10.1039/b510832b

Google Scholar

[15] Y. Xiong, W. Lu, D. Ding, L. Zhu, X. Li, C. Ling, Q. Xue, Enhanced room temperature oxygen sensing properties of LaOCl-SnO2hollow spheres by UV light illumination, ACS Sensors. 2 (2017) 679.

DOI: 10.1021/acssensors.7b00129

Google Scholar

[16] B.K. Dable, K.S. Booksh, R. Cavicchi, S. Semancik, Calibration of microhotplate conductometric gas sensors by non-linear multivariate regression methods, Sens. Actuators B: Chem. 101 (2004) 284-294.

DOI: 10.1016/j.snb.2004.03.003

Google Scholar

[17] S. Nakata, H. Okunishi, Y. Nakashima, Distinction of gases with a semiconductor sensor depending on the scanning profile of a cyclic temperature, Analyst. 131 (2006) 148-154.

DOI: 10.1039/b509996j

Google Scholar

[18] A. Fort, M. Gregorkiewitz, N. Machetti, S. Rocchi, B. Serrano, L. Tondi, N. Ulivieri, V. Vignoli, G. Faglia, E. Comini, Selectivity enhancement of SnO2 sensors by means of operating temperature modulation, Thin Solid Films. 418 (2002) 2-8.

DOI: 10.1016/s0040-6090(02)00575-8

Google Scholar

[19] A.S. A Gramm, High performance solvent vapor identification with a two sensor array using temperature cycling and pattern classification, Sens. Actuators B: Chem. 95 (2003) 58-65.

DOI: 10.1016/s0925-4005(03)00404-0

Google Scholar

[20] E. Strelcov, S. Dmitriev, B. Button, J. Cothren, V. Sysoev, A. Kolmakov, Evidence of the self-heating effect on surface reactivity and gas sensing of metal oxide nanowire chemiresistors, Nanotechnology. 19 (2008) 355502-355502.

DOI: 10.1088/0957-4484/19/35/355502

Google Scholar

[21] J.D. Prades, R. Jimenez-Diaz, F. Hernandez-Ramirez, S. Barth, A. Cirera, A. Romano-Rodriguez, S. Mathur, J.R. Morante, Ultralow power consumption gas sensors based on self-heated individual nanowires, Appl. Phys. Lett. 93 (2008) 123110-123113.

DOI: 10.1063/1.2988265

Google Scholar

[22] D. Wang, X. Chu, M. Gong, Gas-sensing properties of sensors based on single-crystalline SnO2 nanorods prepared by a simple molten-salt method, Sens. Actuators B: Chem. 117 (2006) 183-187.

DOI: 10.1016/j.snb.2005.11.022

Google Scholar

[23] M.R. Yang, S.Y. Chu, R.C. Chang, Synthesis and study of the SnO2 nanowires growth, Sens. Actuators B: Chem. 122 (2007) 269-273.

Google Scholar

[24] E. Comini, G. Faglia, G. Sberveglieri, D. Calestani, L. Zanotti, M. Zha, Tin oxide nanobelts electrical and sensing properties, Sens. Actuators B: Chem. 111-112 (2005) 2-6.

DOI: 10.1016/j.snb.2005.06.031

Google Scholar

[25] J.Q. Hu, Y. Bando, D. Golberg, Self-catalyst growth and optical properties of novel SnO2fishbone-like nanoribbons, Chem. Phys. Lett. 372 (2003) 758-762.

DOI: 10.1016/s0009-2614(03)00503-7

Google Scholar

[26] I.D. Kim, A. Rothschild, H.L. Tuller, Advances and new directions in gas-sensing devices, Acta Mater. 61 (2013) 974-1000.

DOI: 10.1016/j.actamat.2012.10.041

Google Scholar

[27] Y. Xiong, Q. Xue, C. Ling, W. Lu, D. Ding, L. Zhu, X. Li, Effective CO2 detection based on LaOCl-doped SnO2 nanofibers: Insight into the role of oxygen in carrier gas, Sens. Actuators B: Chem. 241 (2017) 725-734.

DOI: 10.1016/j.snb.2016.10.143

Google Scholar

[28] W. Wang, Z. Li, L. Liu, H. Zhang, W. Zheng, Y. Wang, H. Huang, Z. Wang, C. Wang, Humidity sensor based on LiCl-doped ZnO electrospun nanofibers, Sens. Actuators B: Chem. 141 (2009) 404-409.

DOI: 10.1016/j.snb.2009.06.029

Google Scholar

[29] Y. Xiong, W. Xu, D. Ding, W. Lu, L. Zhu, Z. Zhu, Y. Wang, Q. Xue, Ultra-sensitive NH3 sensor based on flower-shaped SnS2 nanostructures with sub-ppm detection ability, J. Hazard. Mater. 341 (2017) 159.

DOI: 10.1016/j.jhazmat.2017.07.060

Google Scholar

[30] Y. Xiong, Z. Zhu, T. Guo, H. Li, Q. Xue, Synthesis of nanowire bundle-like WO3-W18O49 heterostructures for highly sensitive NH3 sensor application, J. Hazard. Mater. 353 (2018) 290-299.

DOI: 10.1016/j.jhazmat.2018.04.020

Google Scholar

[31] M. Schweizer-Berberich, S. Strathmann, U. Weimar, R. Sharma, A. Seube, A. Peyre-Lavigne, W. Göpel, Strategies to avoid VOC cross-sensitivity of SnO2-based CO sensors, Sens. Actuators B: Chem. 58 (1999) 318-324.

DOI: 10.1016/s0925-4005(99)00149-5

Google Scholar

[32] N. Barsan, M. Schweizer-Berberich, W. Göpel, Fundamental and practical aspects in the design of nanoscaled SnO2gas sensors: A status report, Fresen. J. Anal. Chem. 365 (1998) 287-304.

DOI: 10.1007/s002160051490

Google Scholar

[33] V. Lantto, P. Romppainen, Electrical studies on the reactions of CO with different oxygen species on SnO2 surfaces, Surf. Sci. Lett. 192 (1987) 243-264.

DOI: 10.1016/s0039-6028(87)81174-3

Google Scholar