[1]
P. Singh, N.Q. Minh, International Journal of Applied Ceramic Technology, 1 (2004) 5–15.
Google Scholar
[2]
Tian R, Fan J, Liu Y, et al. Low-temperature solid oxide fuel cells with La1−xSrxMnO3, as the cathodes[J]. Journal of Power Sources, 2008, 185(2):1247-1251.
DOI: 10.1016/j.jpowsour.2008.09.058
Google Scholar
[3]
Lee C, Baek S W, Bae J. Cathodic behavior of La0.8Sr0.2Co1−xMnxO3−δ, perovskite oxide on YSZ electrolyte for intermediate temperature-operating solid oxide fuel cells [J]. Solid State Ionics, 2008, 179(27–32):1465-1469.
DOI: 10.1016/j.ssi.2008.01.009
Google Scholar
[4]
Jiang S P, Wang W. Novel structured mixed ionic and electronic conducting cathodes of solid oxide fuel cells [J]. Solid State Ionics, 2005, 176(15–16):1351-1357.
DOI: 10.1016/j.ssi.2005.03.011
Google Scholar
[5]
K. Une, M. Oguma, Journal of Nuclear Materials, 110 (1982) 215-222.
Google Scholar
[6]
D.R. Clarke, C.G. Levi, A.G. Evans, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 220 (2006) 85-92.
Google Scholar
[7]
Yamahara K, Jacobson C P, Visco S J, et al. Thin film SOFCs with cobalt-infiltrated cathodes [J]. Solid State Ionics, 2005, 176(3-4):275-279.
DOI: 10.1016/j.ssi.2004.08.017
Google Scholar
[8]
Kawada T, Sakai N, Yokokawa H, et al. Reaction between solid oxide fuel cell materials[J]. Solid State Ionics, 1992, 50(3-4):189-196.
DOI: 10.1016/0167-2738(92)90218-e
Google Scholar
[9]
Brant M C, Dessemond L. Electrical degradation of LSM-YSZ interfaces [J]. Solid State Ionics, 2000, 138(1):1-17.
DOI: 10.1016/s0167-2738(00)00769-4
Google Scholar
[10]
Yokokawa H, Sakai N, Kawada T, et al. Thermodynamic analysis of reaction profiles between LaMO sub 3 (M = Ni, Co, Mn) and ZrO sub 2[J]. Journal of the Electrochemical Society; (United States), 1991, 138:9.
DOI: 10.1149/1.2086043
Google Scholar
[11]
Yokokawa H, Sakai N, Kawada T, et al. Thermodynamic stabilities of perovskite oxides for electrodes and other electrochemical materials[J]. Solid State Ionics, 1992, 52(92):43-56.
DOI: 10.1016/0167-2738(92)90090-c
Google Scholar
[12]
Forum E SOFC, LUZERN, Bossel U, et al. First European solid oxide fuel cell forum, 3-7 October 1994, Lucerne, Switzerland: proceedings [J]. Epfl, (1994).
DOI: 10.1016/0378-7753(95)02249-x
Google Scholar
[13]
Jørgensen M J, Holtappels P, Appel C C. Durability test of SOFC cathodes [J]. Journal of Applied Electrochemistry, 2000, 30(4):411-418.
Google Scholar
[14]
S.K. Lau and S.C. Singhal, 1985 Fuel Cell Seminar (May 1985, Tucson, AZ, USA) p.107.
Google Scholar
[15]
O. Yamamoto, Y. Takeda, R. Kanno and T. Kojima, Proc. First Intern. Symp. Solid Oxide Fuel Cells, Oct. 1989, Florida, USA, Vol. 89-11 (Electrochem. Soc. Proc.) p.242.
Google Scholar
[16]
Weber A, Männer R, Jobst B, et al. The influence of a-site-deficiency on the performance of strontium doped lanthanum-manganate perovskite type SOFC-cathodes[C]// Risoe Iinternational Symposium on Materials Science: High Temperature Electrochemistry: Ceramics and Metals. (1996).
Google Scholar
[17]
Malzbender J, Batfalsky P, Vaßen R, et al. Component interactions after long-term operation of an SOFC stack with LSM cathode [J]. Journal of Power Sources, 2012, 201(1):196-203.
DOI: 10.1016/j.jpowsour.2011.10.117
Google Scholar
[18]
Zhang R, Lin J, Zhang R. Preparation of YSZ ceramic and the co-firing with insulation Al_2O_3 for planar oxygen sensor[J]. Journal of Functional Materials, (2016).
Google Scholar
[19]
Chen J, Jia J, Fangli Y U. Preparation of Porous YSZ Ceramics Using Activated Carbon Powder as Pore-Forming Agent[J]. China Ceramics, (2017).
Google Scholar
[20]
Chang I, Bae J, Park J, et al. A thermally self-sustaining solid oxide fuel cell system at ultra-low operating temperature (319°C) [J]. Energy, 2016, 104:107-113.
DOI: 10.1016/j.energy.2016.03.099
Google Scholar
[21]
Pietrowski M J, Souza R A D, Fartmann M, et al. Oxygen Isotope Transport Properties of Yttria‐Stabilized Zirconia (YSZ) in O2- and H2O-Containing Atmospheres[J]. Fuel Cells, 2013, 13(5):673-681.
DOI: 10.1002/fuce.201300087
Google Scholar
[22]
Ohi A, Hara S, Jiao Z, et al. OS1609 Microstructural Analysis of Sintering Behavior in SOFC Anode using FIB-SEM[J]. 2014, 2014:_OS1609-1_-_OS1609-3.
DOI: 10.1299/jsmemm.2014._os1609-1_
Google Scholar
[23]
Wang X, Wang F H, Jian Z Y. Studies of Morphology of Half-cell of Anode Supported SOFC after Reduction[J]. Journal of Xian Technological University, (2012).
Google Scholar
[24]
Wang X, Wang F H, Jian Z Y, et al. Studies on Stress Changes of Half-cell for Anode Supported SOFC in Reduction[J]. Journal of Xian Technological University, (2013).
Google Scholar
[25]
C. Milliken, D. Tucker, S. Elangovan and A. Khandkar, Abstracts of 1990 Fuel Cells Seminar (Tucson, AZ, USA, November 25-28, 1990) p.218.
Google Scholar
[26]
Clausen C, Bagger C, Bilde-Sørensen J B, et al. Microstructural and microchemical characterization of the interface between La0.85Sr0.15MnO3, and Y2O3-stabilized ZrO2[J]. Solid State Ionics, 1994, s 70–71(18):59-64.
DOI: 10.1016/0167-2738(94)90287-9
Google Scholar