Effect of Fluorine-Containing Additive on the Electrochemical Properties of Silicon Anode for Lithium-Ion Batteries

Article Preview

Abstract:

Silicon anode is a promising candidate as an alternative to the conventional graphitic anode in lithium-ion batteries. In this work, silicon anode is modified by NH4F using a facile method in air. The concentration of NH4F on the electrochemical performance is systematically checked. The 5wt%NH4F-modified silicon anode exhibits enhanced cycle and rate performances, the first discharge specific capacity is 3958 mAh·g-1 with 86.45% as the coulombic efficiency at 0.4A·g-1. The capacity can maintain at 703.3 mAh·g-1 after 50 cycles, exhibiting a much better cycle stability than pristine silicon anode (329.9 mAh·g-1 after 50 cycles). SEM images confirm that NH4F can alleviate the volume expansion of silicon since LiF can be generated at the surface which is beneficial to the stability of solid-electrolyte interphase (SEI).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

699-704

Citation:

Online since:

January 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Ashuri, Q.R. He, L.L. Shaw, Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter, J. Nanoscale. 8 (2016) 74-103.

DOI: 10.1039/c5nr05116a

Google Scholar

[2] X.X. Zuo, J.Zhu, P. Muller-Buschbaum, et al., Silicon based lithium-ion battery anodes: A chronicle perspective review, J. Nano Energy. 31 (2017) 113-143.

DOI: 10.1016/j.nanoen.2016.11.013

Google Scholar

[3] W.J. Lee, T.H. Hwang, J.O. Hwang, et al., N-doped graphitic self-encapsulation for high performance silicon anode in lithium-ion batteries, J. Energy Environ. Sci. 7 (2014) 621-626.

DOI: 10.1039/c3ee43322f

Google Scholar

[4] J. Niu, S. Zhang, Y. Niu, et al., Silicon-based anode materials for lithium-ion batteries, J. Prog. Chem. 27 (2015) 1275-1290.

Google Scholar

[5] Z.Y. Lu, J.X. Zhu, D.H. Sim, et al., Synthesis of ultrathin silicon nanosheets by using graphene oxide as template, J. Chem. Mater. 23 (2011) 5293-5295.

DOI: 10.1021/cm202891p

Google Scholar

[6] Y.F. Dong, T. Slade, M.J. Stolt, et al., Low-Temperature Molten-Salt Production of Silicon Nanowires by the Electrochemical Reduction of CaSiO3, J. Angew. Chem. Int. Ed. 56 (2017) 14453-14457.

DOI: 10.1002/anie.201707064

Google Scholar

[7] Z.H. Liu, D.D. Guan, Q. Yu, et al., Monodisperse and Homogeneous Siox/C Microspheres: A Promising High-Capacity and Durable Anode Material for Lithium-ion Batteries, J. Energy Storage Materials. 13 (2018) 112-118.

DOI: 10.1016/j.ensm.2018.01.004

Google Scholar

[8] A.M. Haregewoin, A.S. Wotango, B.J. Hwang, Electrolyte additives for lithium ion battery electrodes: progress and perspectives, J. Energy Environ. Sci. 9 (2016) 1955-1988.

DOI: 10.1039/c6ee00123h

Google Scholar

[9] T.M. Higgins, S.H. Park, P.J. King, et al., A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes, J. ACS NANO 10 (2016) 3702-3713.

DOI: 10.1021/acsnano.6b00218

Google Scholar

[10] H. Ma, F.Y. Cheng, J. Chen, et al., Nest-like silicon nanospheres for high-capacity lithium storage, J. Adv. Mater. 19 (2007) 4067-4070.

DOI: 10.1002/adma.200700621

Google Scholar

[11] A.L Michan, M. Leskes, C.P Grey, Voltage dependent solid electrolyte interphase formation in silicon electrodes: monitoring the formation of organic decomposition products, J. Chem. Mater. 28 (2016) 385-398.

DOI: 10.1021/acs.chemmater.5b04408

Google Scholar

[12] A. Tasaka, K. Miki, T. Ohashi, et al., Behavior of nickel anode in CsF-NH4F-HF melts, J. J. Electrochem. Soc. 141 (1994) 1460-1464.

DOI: 10.1149/1.2054946

Google Scholar

[13] A. Mimoto, T. Maeda, T. Ueno, et al., Effect of oxide in nickel-based composite anodes on current efficiency for NF3 formation and current loss caused by nickel dissolution in molten NH4F•2HF, J. Electrochimica Acta, 50 (2005) 2563-2571.

DOI: 10.1016/j.electacta.2004.11.001

Google Scholar

[14] Y.X. Zhang, Y. Luo, Y. Chen, et al., Enhanced rate capability and low-temperature performance of Li4Ti5O12 anode material by facile surface fluorination, J. ACS Appl. Mater. Interfaces. 9 (2017) 17145-17154.

DOI: 10.1021/acsami.7b03489

Google Scholar

[15] J.X. Song, S.R. Chen, M.J. Zhou, et al., Micro-sized silicon-carbon composites composed of carbon-coated sub-10 nm Si primary particles as high-performance anode materials for lithium-ion batteries, J. J. Mater. Chem. A. 2 (2014) 1257-1262.

DOI: 10.1039/c3ta14100d

Google Scholar

[16] M.Y. Wu, J.EC Sabisch, X.Y. Song, et al., In situ formed Si nanoparticle network with micron-sized Si particles for lithium-ion battery anodes, J. Nano Lett. 13 (2013) 5397-5402.

DOI: 10.1021/nl402953h

Google Scholar

[17] L. Qie, W.M. Chen, Z.H. Wang, et al., Nitrogen-doped porous carbon nanofiber webs as anode for lithium ion batteries with a superhigh capacity and rate capability, J. Adv. Mater. 24 (2012) 2047-2050.

DOI: 10.1002/adma.201104634

Google Scholar

[18] Y.J. Chen, B.H. Qu, L.L. Hu, et al., High-performance supercapacitor and lithium-ion battery based on 3D hierarchical NH4F-induced nickel cobaltate nanosheet-nanowire cluster arrays self-supported electrodes, J. Nanoscale. 5 (2013) 9812-9820.

DOI: 10.1039/c3nr02972g

Google Scholar

[19] S.Q. Chen, L.F. Shen, J. Maier, et al., Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries, J. Adv. Mater. 29 (2017) 5650-5657.

DOI: 10.1002/adma.201770142

Google Scholar

[20] Y. Ma, H.D. Asfaw, C.J. Liu, et al., Encasing Si particles within a versatile TiO2-xFx layer as an extremely reversible anode for high energy-density lithium-ion battery, J. Nano Energy. 30 (2016) 745-755.

DOI: 10.1016/j.nanoen.2016.09.026

Google Scholar