Influence of Calcination Temperature on Structure and Electrochemical Behavior of LiNi0.83 Co0.11Mn0.06O2 Cathodes for Lithium-Ion Batteries

Article Preview

Abstract:

Nickel-rich layered oxides (Ni ≥60%) are considered as the most promising cathode materials for lithium-ion batteries due to its high energy density and low cost. However, its cycling performance is seriously influenced by the synthesis condition, like the sintering temperature, time and atmosphere. Herein, we investigate different properties of LiNi0.83Co0.11Mn0.06O2 (LNCMO) sintered from 720 to780 °C, and the cathode calcined at 760 °C display the most perfect layered structure and the uniform distribution of primary particles size. Therefore, the LNCMO sintered at 760 °C exhibited the best rate capability of 118 mAh·g-1 at 10 C and the highest capacity retention of 95.44 % after 100 cycles at 1 C. Our results indicate that the cycling performance and rate capability of LNCMO are heavily depended on the sintering temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

714-720

Citation:

Online since:

January 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature. 414 (2001) 359-367.

DOI: 10.1038/35104644

Google Scholar

[2] P. G. Bruce, B. Scrosati, J. M.Tarascon, Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed Engl. 47 (2008) 2930-2946.

DOI: 10.1002/anie.200702505

Google Scholar

[3] S.T. Myung, F. Maglia, K.J. Park, et al, Nickel-Rich Layered Cathode Materials for Automotive Lithium-Ion Batteries: Achievements and Perspectives. ACS Energy Letters. 2 (2016) 196-223.

DOI: 10.1021/acsenergylett.6b00594

Google Scholar

[4] S. T. Myung, H. J. Noh, S. J. Yoon, et al, Progress in High-Capacity Core-Shell Cathode Materials for Rechargeable Lithium Batteries. J Phys Chem Lett. 4 (2014) 671-679.

DOI: 10.1021/jz402691z

Google Scholar

[5] D.Wang, R. Kou, Y. Ren, et al, Synthetic Control of Kinetic Reaction Pathway and Cationic Ordering in High-Ni Layered Oxide Cathodes. Adv Mater 29 (2017) 39.

DOI: 10.1002/adma.201606715

Google Scholar

[6] P. Rozier, J. M. Tarascon, Review—Li-Rich Layered Oxide Cathodes for Next-Generation Li-Ion Batteries: Chances and Challenges. Journal of The Electrochemical Society.162 (2015) A2490-A2499.

DOI: 10.1149/2.0111514jes

Google Scholar

[7] S.K. Jung, H. Gwon, J. Hong, et al, Understanding the Degradation Mechanisms of LiNi0.5Co0.2Mn0.3O2 Cathode Material in Lithium Ion Batteries. Advanced Energy Materials. 4(2014) 1.

Google Scholar

[8] M. S.Whittingham, Ultimate limits to intercalation reactions for lithium batteries. Chem Rev. 114 (2014) 14-43.

DOI: 10.1021/cr5003003

Google Scholar

[9] L. Li, M. Xu, Q. Yao, et al, Alleviating Surface Degradation of Nickel-Rich Layered Oxide Cathode Material by Encapsulating with Nanoscale Li-Ions/Electrons Superionic Conductors Hybrid Membrane for Advanced Li-Ion Batteries. ACS Appl Mater Interfaces. 8 (2016) 30879-30889.

DOI: 10.1021/acsami.6b09197.s001

Google Scholar

[10] Q. Zhang, Y. Su, L. Chen, et al, Pre-oxidizing the precursors of Nickel-rich cathode materials to regulate their Li+ /Ni2+ cation ordering towards cyclability improvements. J Power Sources. 396 (2018) 734-741.

DOI: 10.1016/j.jpowsour.2018.06.091

Google Scholar

[11] J.Z. Kong, F. Zhou, C.B. Wang, et al, Effects of Li source and calcination temperature on the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 lithium-ion cathode materials. Journal of Alloys and Compounds. 554 (2013) 221-226.

DOI: 10.1016/j.jallcom.2012.11.090

Google Scholar

[12] S. Zhang, C. Deng, B.L. Fu, et al, Synthetic optimization of spherical Li[Ni1/3Mn1/3Co1/3]O2 prepared by a carbonate co-precipitation method. Powder Technology. 198 (2010) 373-380.

DOI: 10.1016/j.powtec.2009.12.002

Google Scholar

[13] J.H. Shim, C.Y. Kim, S.W. Cho, et al, Effects of heat-treatment atmosphere on electrochemical performances of Ni-rich mixed-metal oxide (LiNi0.80Co0.15Mn0.05O2) as a cathode material for lithium ion battery. Electrochim Acta. 138(2014) 15-21.

DOI: 10.1016/j.electacta.2014.06.079

Google Scholar

[14] J. Zheng, P. Yan, L. Estevez, et al, Effect of calcination temperature on the electrochemical properties of nickel-rich LiNi0.76Mn0.14Co0.10O 2 cathodes for lithium-ion batteries. Nano Energy. 49 (2018) 538-548.

DOI: 10.1016/j.nanoen.2018.04.077

Google Scholar

[15] J. Tian, Y. Su, F. Wu, High-Rate and Cycling-Stable Nickel-Rich Cathode Materials with Enhanced Li+ Diffusion Pathway. ACS Appl Mater Interfaces. 8(2016) 582-587.

DOI: 10.1021/acsami.5b09641

Google Scholar

[16] N. Y. Kim, T. Yim, J. H. Song, et al, Microstructural study on degradation mechanism of layered LiNi0.6Co0.2Mn0.2O2 cathode materials by analytical transmission electron microscopy. J Power Sources. 307 (2016)641-648.

DOI: 10.1016/j.jpowsour.2016.01.023

Google Scholar

[17] J. L. Shi, R. Qi, X. D. Zhang, et al, High-Thermal- and Air-Stability Cathode Material with Concentration-Gradient Buffer for Li-Ion Batteries. ACS Appl Mater Interfaces. 9(2017) 42829-42835.

DOI: 10.1021/acsami.7b14684

Google Scholar

[18] Z. Liu, A Yu, J.Y. Lee, Synthesis and characterization of LiNi1-x-yCoxMnyO2 as the cathode materials of secondary lithium batteries. Journal of Power Sources. 81–82(1999) 416-419.

DOI: 10.1016/s0378-7753(99)00221-9

Google Scholar

[19] F. Nobili, F. Croce, B.Scrosati, et al, Electronic and electrochemical properties of LixNi1-yCoyO2 cathodes studied by impedance spectroscopy. Chemistry of Materials 13(2001) 1642-1646.

DOI: 10.1021/cm000600x

Google Scholar

[20] J. Zheng, X. Wu, Y. Yang, Improved electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material by fluorine incorporation. Electrochim Acta. 105 (2013) 200-208.

DOI: 10.1016/j.electacta.2013.04.150

Google Scholar