[1]
J. M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature. 414 (2001) 359-367.
DOI: 10.1038/35104644
Google Scholar
[2]
P. G. Bruce, B. Scrosati, J. M.Tarascon, Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed Engl. 47 (2008) 2930-2946.
DOI: 10.1002/anie.200702505
Google Scholar
[3]
S.T. Myung, F. Maglia, K.J. Park, et al, Nickel-Rich Layered Cathode Materials for Automotive Lithium-Ion Batteries: Achievements and Perspectives. ACS Energy Letters. 2 (2016) 196-223.
DOI: 10.1021/acsenergylett.6b00594
Google Scholar
[4]
S. T. Myung, H. J. Noh, S. J. Yoon, et al, Progress in High-Capacity Core-Shell Cathode Materials for Rechargeable Lithium Batteries. J Phys Chem Lett. 4 (2014) 671-679.
DOI: 10.1021/jz402691z
Google Scholar
[5]
D.Wang, R. Kou, Y. Ren, et al, Synthetic Control of Kinetic Reaction Pathway and Cationic Ordering in High-Ni Layered Oxide Cathodes. Adv Mater 29 (2017) 39.
DOI: 10.1002/adma.201606715
Google Scholar
[6]
P. Rozier, J. M. Tarascon, Review—Li-Rich Layered Oxide Cathodes for Next-Generation Li-Ion Batteries: Chances and Challenges. Journal of The Electrochemical Society.162 (2015) A2490-A2499.
DOI: 10.1149/2.0111514jes
Google Scholar
[7]
S.K. Jung, H. Gwon, J. Hong, et al, Understanding the Degradation Mechanisms of LiNi0.5Co0.2Mn0.3O2 Cathode Material in Lithium Ion Batteries. Advanced Energy Materials. 4(2014) 1.
Google Scholar
[8]
M. S.Whittingham, Ultimate limits to intercalation reactions for lithium batteries. Chem Rev. 114 (2014) 14-43.
DOI: 10.1021/cr5003003
Google Scholar
[9]
L. Li, M. Xu, Q. Yao, et al, Alleviating Surface Degradation of Nickel-Rich Layered Oxide Cathode Material by Encapsulating with Nanoscale Li-Ions/Electrons Superionic Conductors Hybrid Membrane for Advanced Li-Ion Batteries. ACS Appl Mater Interfaces. 8 (2016) 30879-30889.
DOI: 10.1021/acsami.6b09197.s001
Google Scholar
[10]
Q. Zhang, Y. Su, L. Chen, et al, Pre-oxidizing the precursors of Nickel-rich cathode materials to regulate their Li+ /Ni2+ cation ordering towards cyclability improvements. J Power Sources. 396 (2018) 734-741.
DOI: 10.1016/j.jpowsour.2018.06.091
Google Scholar
[11]
J.Z. Kong, F. Zhou, C.B. Wang, et al, Effects of Li source and calcination temperature on the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 lithium-ion cathode materials. Journal of Alloys and Compounds. 554 (2013) 221-226.
DOI: 10.1016/j.jallcom.2012.11.090
Google Scholar
[12]
S. Zhang, C. Deng, B.L. Fu, et al, Synthetic optimization of spherical Li[Ni1/3Mn1/3Co1/3]O2 prepared by a carbonate co-precipitation method. Powder Technology. 198 (2010) 373-380.
DOI: 10.1016/j.powtec.2009.12.002
Google Scholar
[13]
J.H. Shim, C.Y. Kim, S.W. Cho, et al, Effects of heat-treatment atmosphere on electrochemical performances of Ni-rich mixed-metal oxide (LiNi0.80Co0.15Mn0.05O2) as a cathode material for lithium ion battery. Electrochim Acta. 138(2014) 15-21.
DOI: 10.1016/j.electacta.2014.06.079
Google Scholar
[14]
J. Zheng, P. Yan, L. Estevez, et al, Effect of calcination temperature on the electrochemical properties of nickel-rich LiNi0.76Mn0.14Co0.10O 2 cathodes for lithium-ion batteries. Nano Energy. 49 (2018) 538-548.
DOI: 10.1016/j.nanoen.2018.04.077
Google Scholar
[15]
J. Tian, Y. Su, F. Wu, High-Rate and Cycling-Stable Nickel-Rich Cathode Materials with Enhanced Li+ Diffusion Pathway. ACS Appl Mater Interfaces. 8(2016) 582-587.
DOI: 10.1021/acsami.5b09641
Google Scholar
[16]
N. Y. Kim, T. Yim, J. H. Song, et al, Microstructural study on degradation mechanism of layered LiNi0.6Co0.2Mn0.2O2 cathode materials by analytical transmission electron microscopy. J Power Sources. 307 (2016)641-648.
DOI: 10.1016/j.jpowsour.2016.01.023
Google Scholar
[17]
J. L. Shi, R. Qi, X. D. Zhang, et al, High-Thermal- and Air-Stability Cathode Material with Concentration-Gradient Buffer for Li-Ion Batteries. ACS Appl Mater Interfaces. 9(2017) 42829-42835.
DOI: 10.1021/acsami.7b14684
Google Scholar
[18]
Z. Liu, A Yu, J.Y. Lee, Synthesis and characterization of LiNi1-x-yCoxMnyO2 as the cathode materials of secondary lithium batteries. Journal of Power Sources. 81–82(1999) 416-419.
DOI: 10.1016/s0378-7753(99)00221-9
Google Scholar
[19]
F. Nobili, F. Croce, B.Scrosati, et al, Electronic and electrochemical properties of LixNi1-yCoyO2 cathodes studied by impedance spectroscopy. Chemistry of Materials 13(2001) 1642-1646.
DOI: 10.1021/cm000600x
Google Scholar
[20]
J. Zheng, X. Wu, Y. Yang, Improved electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material by fluorine incorporation. Electrochim Acta. 105 (2013) 200-208.
DOI: 10.1016/j.electacta.2013.04.150
Google Scholar