Phase Field Simulation for Abnormal Growth of Grains by the In-Homogeneous Grain Boundary Energy

Article Preview

Abstract:

The phase field models have been built to study the influence of the nonuniform grain boundary energy for abnormal growth of grains in the AZ31 magnesium alloy in the real time and space. The simulated results show that if the grains of a certain orientation with low grain boundary energy in the AZ31 Mg alloy, abnormal grain growth will occur after annealing treatment, and only if the local low grain boundary energy is less than 0.98σ0, can the certain grains grow abnormally in the microstructure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

747-752

Citation:

Online since:

January 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X B Zhao , W M Mao. Metal recrystallization and grain growth. Beijing: Metall Industry Press, (1994).

Google Scholar

[2] M Hillert . On the theory of normal and abnormal grain growth. Acta Metal. 13 (1965) 227-238.

DOI: 10.1016/0001-6160(65)90200-2

Google Scholar

[3] A Lawrence, J M Rickman , M P Harmer , A D Rollett. Parsing abnormal grain growth. Acta Mater. 103 (2016) 681-687.

DOI: 10.1016/j.actamat.2015.10.034

Google Scholar

[4] R T Xiao, H Yu, P Zhou. Abnormal grain growth mechanism of austenite in high-strength welded steel Q1030. J. Univ. Sci. Technol. B. 33 (2011) 1458-1462.

Google Scholar

[5] L Z Yan, Y A Zhang, B Q Xiong, X W Li, Z H Li, H W Liu, S H Huang and G Zhao. Mechanical properties, microstructure and surface quality of Al-1.2Mg-0,6Si-0.2Cu alloy after solution heat treatment. Rare Met. 36 (2017) 550-555.

DOI: 10.1007/s12598-015-0623-1

Google Scholar

[6] C Yuan, X X Gao, J H Li and X Q Bao. Secondary recrystallization of Goss texture in magnetostrictive Fe-Ga-based sheets. Rare Met. (2014) https://doi.org/10.1007/s12598-014-0284-5.

DOI: 10.1007/s12598-014-0284-5

Google Scholar

[7] P J Noell, E M Taleff. Dynamic abnormal grain growth in refractory metals. JOM. 76 (2015) 2642-2645.

DOI: 10.1007/s11837-015-1592-4

Google Scholar

[8] W Rheinheimer, M J Hoffmann. Grain growth transitions of perovskite ceramics and their relationship to abnormal grain growth and bimodal microstructures. J. Mater. Sci. 51 (2016) 1756-1765.

DOI: 10.1007/s10853-015-9535-6

Google Scholar

[9] J M Kim, G Min, J H Shim and K J Lee. Effect of Time Dependent Pinning Pressure on abnormal grain growth: phase field simulation. Met. Mater. Int. 24 (2018) 549-559.

DOI: 10.1007/s12540-018-0070-2

Google Scholar

[10] B L Decost, EA Holm. Phenomenology of abnormal grain growth in systems with nonuniform grain boundary mobility. Metall. Mat.Tran. A, 48 (2017) 2771-2780.

DOI: 10.1007/s11661-016-3673-6

Google Scholar

[11] J H Li, W L Zhang, C Yuan, X Q Bao, X X Gao. Inhibition force of precipitates for promoting abnormal grain growth in magnetostrictive Fe83Ga17-(B, NbC) alloy sheets. Rare Met. 36 (2017) 886-893.

DOI: 10.1007/s12598-017-0956-z

Google Scholar

[12] M Moriyama, K Matsunaga, M Murakami. The effect of strain on abnormal grain growth in Cu Thin Films. Journal of Elec. Materi. 32 (2003) 261-267.

DOI: 10.1007/s11664-003-0219-7

Google Scholar

[13] N Wang Y H, Wen, L Q Chen. Pining force from multiple second-phase particles in grain growth. Comput. Mater. Sci. 193 (2014) 81-85.

Google Scholar

[14] A Artemev, Y Wang, A G Khachaturyan. Three-dimensional phase field model and simulation of martensitic transformation in multilayer systems under applied stresses [J], Acta Mater. 48 (2000) 2503-2518.

DOI: 10.1016/s1359-6454(00)00071-9

Google Scholar

[15] Y Wu, B Y Zong, X G Zhang and M T Wang. Grain growth in multiple scales of polycrystalline AZ31 magnesium alloy by phase field simulation. Metall and Mater Trans A. 44 (2013) 1599-1610.

DOI: 10.1007/s11661-012-1478-9

Google Scholar

[16] Y Suwa, Y Saito, H Onodera. Phase field simulation of abnormal grain growth due to inverse pinning. Acta Mater. 55 (2007) 6881-6894.

DOI: 10.1016/j.actamat.2007.08.045

Google Scholar

[17] E Miyoshi, T Takaki. Validation of a novel higher-order multi-phase-field model for grain-growth simulations using anisotropic grain-boundary properties. Comput. Mater. Sci. 112 (2016) 44-51.

DOI: 10.1016/j.commatsci.2015.10.010

Google Scholar

[18] Y Wu, Y P Zong, J F Jin. Grain growth in a nanostructured AZ31 Mg alloy containing second phase particles studied by phase field simulations. Sci. China Mater. 59 (2016) 355-362.

DOI: 10.1007/s40843-016-5036-4

Google Scholar

[19] M T Wang, B Y Zong, G Wang. Grain growth in AZ31 Mg alloy during recrystallization at different temperatures by phase field simulation. Comput. Mater. Sci. 45 (2009) 217-222.

DOI: 10.1016/j.commatsci.2008.09.010

Google Scholar

[20] S M Allen, J W Cahn. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27 (1979) 1085-1095.

DOI: 10.1016/0001-6160(79)90196-2

Google Scholar

[21] J W Cahn, J E Hilliard. Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28 (1958) 258-267.

DOI: 10.1063/1.1744102

Google Scholar

[22] Y H Wen, B Wang, J P Simmons and Y Wang. A phase-field model for heat treatment applications in Ni-based alloys. Acta Mater. 54 (2006) 2087-2099.

DOI: 10.1016/j.actamat.2006.01.001

Google Scholar

[23] K J Ko, P R Cha, D Srolovite and N M Hwang. Abnormal grain growth induced by sub-boundary-enhanced solid-state wetting: Analysis by phase-field model simulations. Acta Mater. 57 (2009) 838-845.

DOI: 10.1016/j.actamat.2008.10.030

Google Scholar

[24] D.K. Lee, K.J. Ko, B J Lee and N M Hwang. Monte Carlo simulation of abnormal grain growth by sub-boundary-enhanced solid-state wetting. Scripta Mater. 58 (2008) 683-686.

DOI: 10.1016/j.scriptamat.2007.12.004

Google Scholar

[25] M.T. Wang, B.Y. Zong, G. Wang. Grain growth in AZ31 Mg alloy during recrystallization at different temperatures by phase field simulation. Comput Mater Sci. 45(2009) 217-222.

DOI: 10.1016/j.commatsci.2008.09.010

Google Scholar