First-Principles Investigations on the Elastic Properties of Platinum Group Metals (Pt, Pd, and Ru)

Article Preview

Abstract:

The structural, mechanical, and thermodynamic properties of platinum group metals (Pt, Pd, and Ru) were systematically investigated by first-principles calculations based on density functional theory. Comparative studies show that Ru has the best comprehensive mechanical properties. Based on the Pugh’s rule and Poisson’s ratio, it is judged that Pt and Pd are ductility materials, and Ru exhibits obvious brittleness. Furthermore, the elastic anisotropy is also discussed by plotting both the 3D contours and the 2D planar projections of Young's modulus and shear modulus. The predicted elastic anisotropy factors indicate that the degree of elastic anisotropy of Pd is significant, while Ru has the smallest elastic anisotropy. By using the Clarke’s model, the minimum thermal conductivities of these metals have also been analyzed, and the results indicate that the low minimum thermal conductivity is proportional to the Debye temperature ΘD. The above results can provide a valuable reference for revealing the microscopic deformation mechanism and designing new materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

761-769

Citation:

Online since:

January 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Jurgen Merker, David Lupton, Michael Topfer, Harald Knake, High Temperature Mechanical Properties of the Platinum Group Metals. Platinum Metals Review. 45 (2001) 74-82.

DOI: 10.1595/147106706x154198

Google Scholar

[2] R. Weiland, D. F. Lupton, B. Fischer, J. Merker, C. Scheckenbach, J. Witte, High-Temperature Mechanical Properties of the Platinum Group Metals. Platinum Metals Review. 50 (2006) 158-170.

DOI: 10.1595/147106706x154198

Google Scholar

[3] Y. Wang, J.J. Wang, H. Zhang, V.R. Manga, S.L. Shang, L.Q. Chen, Z.K. Liu, A first-principles approach to finite temperature elastic constants. Journal of physics. Condensed matter : an Institute of Physics journal. 22 (2010) 225404.

DOI: 10.1088/0953-8984/22/22/225404

Google Scholar

[4] FuZhi Dai, Yanchun Zhou, Wei Sun, Segregation of solute atoms (Y, Nb, Ta, Mo and W) in ZrB2 grain boundaries and their effects on grain boundary strengths: A first-principles investigation. Acta Materialia. 127 (2017) 312-318.

DOI: 10.1016/j.actamat.2017.01.048

Google Scholar

[5] Michael C. Gao, Omer N. Dogan, Paul King, Anthony D. Rollett, Michael Widom, The first-principles design of ductile refractory alloys. Jom. 60 (2008) 61-65.

DOI: 10.1007/s11837-008-0092-1

Google Scholar

[6] Xianfeng Hao, Zhijian Wu, Yuanhui Xu, Defeng Zhou, Xiaojuan Liu, Jian Meng, Trends in elasticity and electronic structure of 5d transition metal diborides: first-principles calculations. Journal of Physics: Condensed Matter. 19 (2007) 196212.

DOI: 10.1088/0953-8984/19/19/196212

Google Scholar

[7] U. F. Ozyar, E. Deligoz, K. Colakoglu, Systematic study on the anisotropic elastic properties of tetragonal XYSb (X = Ti, Zr, Hf; Y = Si, Ge) compounds. Solid State Sciences. 40 (2015) 92-100.

DOI: 10.1016/j.solidstatesciences.2015.01.001

Google Scholar

[8] Guohui Yi, Xinyu Zhang, Jiaqian Qin, Jinliang Ning, Suhong Zhang, Mingzhen Ma, Riping Liu, Mechanical, electronic and thermal properties of Cu5Zr and Cu5Hf by first-principles calculations. Journal of Alloys and Compounds. 640 (2015) 455-461.

DOI: 10.1016/j.jallcom.2015.03.198

Google Scholar

[9] Junyan Wu, Bo Zhang, Yongzhong Zhan, Ab initio investigation into the structure and properties of Ir–Zr intermetallics for high-temperature structural applications. Computational Materials Science. 131 (2017) 146-159.

DOI: 10.1016/j.commatsci.2017.01.047

Google Scholar

[10] Rong An, Chunqing Wang, Yanhong Tian, Determination of the Elastic Properties of Au5Sn and AuSn from Ab Initio Calculations. Journal of Electronic Materials. 37 (2008) 968-974.

DOI: 10.1007/s11664-008-0453-0

Google Scholar

[11] Haiyan Yan, Meiguang Zhang, Qun Wei, Ping Guo, Theoretical study on tetragonal transition metal dinitrides from first principles calculations. Journal of Alloys and Compounds. 581 (2013) 508-514.

DOI: 10.1016/j.jallcom.2013.07.157

Google Scholar

[12] James W. Edwards, Rudolph Speiser, Herrick L. Johnston, High Temperature Structure and Thermal Expansion of Some Metals as Determined by X-Ray Diffraction Data. I. Platinum, Tantalum, Niobium, and Molybdenum. Journal of Applied Physics. 22 (1951) 424-428.

DOI: 10.1063/1.1699977

Google Scholar

[13] Albert W. Hull, X-Ray Crystal Analysis of Thirteen Common Metals. Physical Review. 17 (1921) 571-588.

DOI: 10.1103/physrev.17.571

Google Scholar

[14] E.A. Owen, E.W. Roberts, The crystal parameters of osmium and ruthenium at different temperatures. Zeitschrift für Kristallographie-Crystalline Materials. 96 (1937) 497-498.

DOI: 10.1524/zkri.1937.96.1.497

Google Scholar

[15] Wei Zhou, Lijuan Liu, Baoling Li, Ping Wu, Qinggong Song, Structural, elastic and electronic properties of intermetallics in the Pt-Sn system: A density functional investigation. Computational Materials Science. 46 (2009) 921-931.

DOI: 10.1016/j.commatsci.2009.04.044

Google Scholar

[16] A Eichler, F Mittendorfer, J Hafner, Precursor-mediated adsorption of oxygen on the (111) surfaces of platinum-group metals. Physical Review B. 62 (2000) 4744-4755.

DOI: 10.1103/physrevb.62.4744

Google Scholar

[17] B. Wang, M. L. Bocquet, S. Marchini, S. Gunther, J. Wintterlin, Chemical origin of a graphene moire overlayer on Ru(0001). Physical chemistry chemical physics : PCCP. 10 (2008) 3530-3534.

DOI: 10.1039/b801785a

Google Scholar

[18] R. Gaillac, P. Pullumbi, F. X. Coudert, ELATE: an open-source online application for analysis and visualization of elastic tensors. Journal of physics. Condensed matter : an Institute of Physics journal. 28 (2016) 275201.

DOI: 10.1088/0953-8984/28/27/275201

Google Scholar

[19] S. L. Shang, A. Saengdeejing, Z. G. Mei, D. E. Kim, H. Zhang, S. Ganeshan, Y. Wang, Z. K. Liu, First-principles calculations of pure elements: Equations of state and elastic stiffness constants. Computational Materials Science. 48 (2010) 813-826.

DOI: 10.1016/j.commatsci.2010.03.041

Google Scholar

[20] A. V. Lugovskoy, M. P. Belov, O. M. Krasilnikov, Yu Kh Vekilov, Stability of the hcp Ruthenium at high pressures from first principles. Journal of Applied Physics. 116 (2014) 103507.

DOI: 10.1063/1.4894167

Google Scholar

[21] H. M. Ledbetter, R. P. Reed, Elastic Properties of Metals and Alloys, I. Iron, Nickel, and Iron‐Nickel Alloys. Journal of Physical and Chemical Reference Data. 2 (1973) 531-618.

DOI: 10.1063/1.3253127

Google Scholar

[22] Kai Xiong, Jianfeng Gu, Understanding pop-in phenomena in FeNi3 nanoindentation. Intermetallics. 67 (2015) 111-120.

DOI: 10.1016/j.intermet.2015.08.007

Google Scholar

[23] Xinyu Zhang, Lin Chen, Mingzhen Ma, Yan Zhu, Suhong Zhang, Riping Liu, Structural, elastic, and thermal properties of Laves phase ZrV2 under pressure. Journal of Applied Physics. 109 (2011) 113523.

DOI: 10.1063/1.3590707

Google Scholar

[24] J. Wang, S. Yip, S. R. Phillpot, D. Wolf, Crystal instabilities at finite strain. Physical review letters. 71 (1993) 4182-4185.

DOI: 10.1103/physrevlett.71.4182

Google Scholar

[25] Kai Xiong, Haiming Lu, Jianfeng Gu, Atomistic simulations of the nanoindentation-induced incipient plasticity in Ni 3 Al crystal. Computational Materials Science. 115 (2016) 214-226.

DOI: 10.1016/j.commatsci.2015.12.045

Google Scholar

[26] Hsien Chie. Cheng, Ching Feng. Yu, Wen Hwa. Chen, First-principles density functional calculation of mechanical, thermodynamic and electronic properties of CuIn and Cu2In crystals. Journal of Alloys and Compounds. 546 (2013) 286-295.

DOI: 10.1016/j.jallcom.2012.08.077

Google Scholar

[27] Yong Li, XiaoJuan Ma, QiJun Liu, FuSheng Liu, HaiXia Ma, GeXing Kong, ZhengTang Liu, First-principles calculations of the structural, elastic and thermodynamic properties of tetragonal copper-titanium intermetallic compounds. Journal of Alloys and Compounds. 687 (2016) 984-989.

DOI: 10.1016/j.jallcom.2016.06.186

Google Scholar

[28] David R. Clarke, Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surface and Coatings Technology. 163 (2003) 67-74.

DOI: 10.1016/s0257-8972(02)00593-5

Google Scholar

[29] Joseph Callaway, Model for Lattice Thermal Conductivity at Low Temperatures. Physical Review. 113 (1959) 1046-1051.

DOI: 10.1103/physrev.113.1046

Google Scholar