[1]
M. Foex, Dilatometric and electric studies of the anomaly of vanadium sesquioxide at low temperatures, Compt Rend. 223 (1946) 1126–1128.
Google Scholar
[2]
D.B. McWhan, J.P. Remeika, Physical Review B, 2 (1970) 3734-3750.
Google Scholar
[3]
P.D. Dernier, M. Marezio, Physical Review B, 2(1970) 3771–3776.
Google Scholar
[4]
G. Kotliar, D. Vollhardt, Phys. Today 57 (2004) 53-59.
Google Scholar
[5]
H.R. Kokabi, F. Studer, M. Toulemonde, Nuclear Instruments&Methods B 111 (1996) 75–83.
Google Scholar
[6]
M.G. Joshi, M.J. Honig, Revue De Chimie Minerale 19 (1982) 251–262.
Google Scholar
[7]
C. Tenailleau, E. Suard, J. Rodriguez-Carvajal, M.P. Crosnier-Lopez, P. Lacorre, Chemistry of Materials. 14 (2002) 3569–3575.
DOI: 10.1021/cm021127l
Google Scholar
[8]
T. Suzuki, M. Ogino, T. Yoshizuka, K. Kurihara, K. Tsuda, J. ASTR 17 (1999) 135–142.
Google Scholar
[9]
R.S. Perkins, A. Ruegg, M. Fischer, PTC thermistors based on vanadium (III) oxide: the influence of microstructure upon electrical properties, Advances in Ceramics. 7 (1983) 166–176.
Google Scholar
[10]
D.M. Moffatt, J.P. Runt, A. Halliyal, J. Mater. Sci. 24 (1989) 609–614.
Google Scholar
[11]
Y. Pan, G. Wu, X. Yi, J. Mater. Sci. 29 (1994) 5757–5764.
Google Scholar
[12]
N. Ballarini, A. Battisti, F. Cavani, A. Cericola, C. Lucarelli, S. Racioppi, P. Arpentinier, Catalysis Today 116 (2006) 313–323.
DOI: 10.1016/j.cattod.2006.05.076
Google Scholar
[13]
S. Kittaka, S. Sasaki, T. Morimoto, J. Mater. Sci. 22 (1987) 557–564.
Google Scholar
[14]
R.J. Sullivan, T.T. Srinivasan, R.E. Newnham, J. Am. Ceram. Soc. 73 (1990) 3715–3717.
Google Scholar
[15]
N. Pinna, M. Antonietti, M. Niederberger, A novel nonaqueous route to V2O3 and Nb2O5 nanocrystals, Colloids Surf. A 250 (2004) 211–213.
DOI: 10.1016/j.colsurfa.2004.04.078
Google Scholar
[16]
J. Piao, S. Takahashi, S. Kohiki, Preparation and characterization of V2O3 powder and film, Jpn. J. Appl. Phys. 37 (1998) 6519–6523.
DOI: 10.1143/jjap.37.6519
Google Scholar
[17]
F. Sediri, N. Gharbi, Mater. Sci. Eng. B 123 (2005) 136–138.
Google Scholar
[18]
T. Oyama, Y. Limura, K. Takeuchi, Synthesis of fine particles of Sn, Ti, and Voxides by laser-induced vapor-phase reaction, J. Photopolym. Sci. Tec. 10 (1997) 211–216.
DOI: 10.2494/photopolymer.10.211
Google Scholar
[19]
C. Zheng, X. Zhang, S. He, Preparation and characterization of spherical V2O3 nanopowder, J. Solid. State. Chem. 170 (2003) 221–226.
DOI: 10.1016/s0022-4596(02)00038-5
Google Scholar
[20]
Xinghai Liu, Yifu Zhang, Shengping Yi, Chi Huang, Jun Liao, Houbin Li, Preparation of V2O3 nanopowders by supercritical fluid reduction, J. Supercrit. Fluid 56 (2011) 194-200.
DOI: 10.1016/j.supflu.2010.11.012
Google Scholar
[21]
K.F. Zhang, X.Z. Sun, G.W. Lou, X. Liu, H.L. Li, Z.X. Su, A new method for preparing V2O3 nanopowder, Materials Letters 59 (2005) 2729–2731.
DOI: 10.1016/j.matlet.2005.01.090
Google Scholar
[22]
R. Teghil, L. D'Alessio, A. De Bonis, A. Galasso, N. Ibris, A.M. Salvi, A. Santagata, P. Villani, Nanoparticles and thin film formation in ultrashort pulsed laser deposition of vanadium oxide, J. Phys. Chem. A 113 (2009) 14969–14974.
DOI: 10.1021/jp9050947
Google Scholar
[23]
Sun, Y., Jiang, S., Bi, W., Wu, C., & Xie, Y., Highly ordered lamellar V2O3-based hybrid nanorods towards superior aqueous lithium-ion battery performance. Journal of Power Sources 196 (20) (2011) 8644–8650.
DOI: 10.1016/j.jpowsour.2011.06.050
Google Scholar
[24]
Chen, J., Liu, X., & Su, Z.-X., Facile synthesis and characterisation of dandelion-like V2O3 core–shell microspheres. Micro & Nano Letters 6 (3) (2011) 102.
DOI: 10.1049/mnl.2010.0207
Google Scholar
[25]
X. Yi, X. Wang, X. Zhang, B. Dai, Acta Chim. Sin. 40 (1982) 1111.
Google Scholar
[26]
Zhang, Y., Huang, C., Meng, C., & Hu, T., A novel route for synthesis and growth formation of metal oxides microspheres: Insights from V 2 O 3 microspheres. Materials Chemistry and Physics 177 (2016) 543–553.
DOI: 10.1016/j.matchemphys.2016.04.067
Google Scholar
[27]
N.K. Nag, F.E. Massoth, ESCA and gravimetric reduction studies on V/Al2O3, and V/SiO2, J. Catal. 124 (1990) 127-132.
DOI: 10.1016/0021-9517(90)90109-w
Google Scholar
[28]
J. Mendialdua, R. Casanova, Y. Barbaux, XPS studies of V2O5, V6O13, VO2 and V2O3, J. Electron Spectrosc. Relat. Phenom. 71 (1995) 249-261.
DOI: 10.1016/0368-2048(94)02291-7
Google Scholar
[29]
G. Silversmit, D. Depla, H. Poelman, G. B. Marin, R. D. Gryse, Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+), J. Electron Spectrosc. Relat. Phenom. 135 (2004) 167-175.
DOI: 10.1016/j.elspec.2004.03.004
Google Scholar
[30]
C.D. Wagner, A.V. Naumkin, A. Kraut-Vass, J.W. Allison, C.J. Powell, J.R. Rumble, Jr., NIST X-ray photoelectron spectroscopy database, version 3.3 (web version), 2003, http://srdata.nist.gov/xps.
DOI: 10.6028/nist.tn.1289
Google Scholar
[31]
K.C. Satapathy, R. Parmar, B. Sahoo, Thermal decomposition of vanadyl oxalate, Ind. J. Chem. 1 (1963) 402.
Google Scholar
[32]
X. Liu, G. Xie, C. Huang, Q. Xu, Y. Zhang, Y. Luo, A facile method for preparing VO2 nanobelts, Materials Letters 62 (2008) 1878–1880.
DOI: 10.1016/j.matlet.2007.10.022
Google Scholar
[33]
C. H. Lai, C. K. Lin, S. W. Lee, H. Y. Li, J. K. Chang, M. J. Deng. Nanostructured Na-doped vanadium oxide synthesized using an anodic deposition technique for supercapacitor applications[J]. J.Alloy.Compd, 536 S (2012) S428-S431.
DOI: 10.1016/j.jallcom.2011.12.038
Google Scholar
[34]
N. N. Wang, Y. F. Zhang, T. Hu, Y. F. Zhao, C. G. Meng. Facile hydrothermal synthesis of ultra high-aspect-ratio V2O5 nanowires for high-performance supercapacitors[J]. Curr. Appl.Phys. 15 (2015) 493-498.
DOI: 10.1016/j.cap.2015.01.026
Google Scholar
[35]
J. Yang, T. B. Lan, J. D. Liu, Y. F. Song, M. D. Wei. Supercapacitor electrode of hollow spherical V2O5 with a high pseudocapacitance in aqueous solution[J]. Electrochimica Acta, 105 (2013) 489-495.
DOI: 10.1016/j.electacta.2013.05.023
Google Scholar