Micromorphology and Characterization of V2O3 Nanoparticles Produced by the Liquid Phase Reduction-Heat Treatment

Article Preview

Abstract:

The liquid phase reduction-heat treatment has been used to prepare V2O3 nanoparticles in this paper. It is a novel method that the precursor was developed by Oxalic acid dehydrate (H2C2O4·2H2O) reduction of V2O5 powder in anhydrous ethanol. V2O3 nanoparticles were successfully obtained by thermal treatment of the precursor. The phase, composition, structure, and morphology of the as-obtained samples were verified by XRD, XPS, SEM and TEM measurements. Meanwhile, the possible formation mechanism of V2O3 in the heat-treatment is briefly discussed by analyzing the DSC.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

650-656

Citation:

Online since:

January 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Foex, Dilatometric and electric studies of the anomaly of vanadium sesquioxide at low temperatures, Compt Rend. 223 (1946) 1126–1128.

Google Scholar

[2] D.B. McWhan, J.P. Remeika, Physical Review B, 2 (1970) 3734-3750.

Google Scholar

[3] P.D. Dernier, M. Marezio, Physical Review B, 2(1970) 3771–3776.

Google Scholar

[4] G. Kotliar, D. Vollhardt, Phys. Today 57 (2004) 53-59.

Google Scholar

[5] H.R. Kokabi, F. Studer, M. Toulemonde, Nuclear Instruments&Methods B 111 (1996) 75–83.

Google Scholar

[6] M.G. Joshi, M.J. Honig, Revue De Chimie Minerale 19 (1982) 251–262.

Google Scholar

[7] C. Tenailleau, E. Suard, J. Rodriguez-Carvajal, M.P. Crosnier-Lopez, P. Lacorre, Chemistry of Materials. 14 (2002) 3569–3575.

DOI: 10.1021/cm021127l

Google Scholar

[8] T. Suzuki, M. Ogino, T. Yoshizuka, K. Kurihara, K. Tsuda, J. ASTR 17 (1999) 135–142.

Google Scholar

[9] R.S. Perkins, A. Ruegg, M. Fischer, PTC thermistors based on vanadium (III) oxide: the influence of microstructure upon electrical properties, Advances in Ceramics. 7 (1983) 166–176.

Google Scholar

[10] D.M. Moffatt, J.P. Runt, A. Halliyal, J. Mater. Sci. 24 (1989) 609–614.

Google Scholar

[11] Y. Pan, G. Wu, X. Yi, J. Mater. Sci. 29 (1994) 5757–5764.

Google Scholar

[12] N. Ballarini, A. Battisti, F. Cavani, A. Cericola, C. Lucarelli, S. Racioppi, P. Arpentinier, Catalysis Today 116 (2006) 313–323.

DOI: 10.1016/j.cattod.2006.05.076

Google Scholar

[13] S. Kittaka, S. Sasaki, T. Morimoto, J. Mater. Sci. 22 (1987) 557–564.

Google Scholar

[14] R.J. Sullivan, T.T. Srinivasan, R.E. Newnham, J. Am. Ceram. Soc. 73 (1990) 3715–3717.

Google Scholar

[15] N. Pinna, M. Antonietti, M. Niederberger, A novel nonaqueous route to V2O3 and Nb2O5 nanocrystals, Colloids Surf. A 250 (2004) 211–213.

DOI: 10.1016/j.colsurfa.2004.04.078

Google Scholar

[16] J. Piao, S. Takahashi, S. Kohiki, Preparation and characterization of V2O3 powder and film, Jpn. J. Appl. Phys. 37 (1998) 6519–6523.

DOI: 10.1143/jjap.37.6519

Google Scholar

[17] F. Sediri, N. Gharbi, Mater. Sci. Eng. B 123 (2005) 136–138.

Google Scholar

[18] T. Oyama, Y. Limura, K. Takeuchi, Synthesis of fine particles of Sn, Ti, and Voxides by laser-induced vapor-phase reaction, J. Photopolym. Sci. Tec. 10 (1997) 211–216.

DOI: 10.2494/photopolymer.10.211

Google Scholar

[19] C. Zheng, X. Zhang, S. He, Preparation and characterization of spherical V2O3 nanopowder, J. Solid. State. Chem. 170 (2003) 221–226.

DOI: 10.1016/s0022-4596(02)00038-5

Google Scholar

[20] Xinghai Liu, Yifu Zhang, Shengping Yi, Chi Huang, Jun Liao, Houbin Li, Preparation of V2O3 nanopowders by supercritical fluid reduction, J. Supercrit. Fluid 56 (2011) 194-200.

DOI: 10.1016/j.supflu.2010.11.012

Google Scholar

[21] K.F. Zhang, X.Z. Sun, G.W. Lou, X. Liu, H.L. Li, Z.X. Su, A new method for preparing V2O3 nanopowder, Materials Letters 59 (2005) 2729–2731.

DOI: 10.1016/j.matlet.2005.01.090

Google Scholar

[22] R. Teghil, L. D'Alessio, A. De Bonis, A. Galasso, N. Ibris, A.M. Salvi, A. Santagata, P. Villani, Nanoparticles and thin film formation in ultrashort pulsed laser deposition of vanadium oxide, J. Phys. Chem. A 113 (2009) 14969–14974.

DOI: 10.1021/jp9050947

Google Scholar

[23] Sun, Y., Jiang, S., Bi, W., Wu, C., & Xie, Y., Highly ordered lamellar V2O3-based hybrid nanorods towards superior aqueous lithium-ion battery performance. Journal of Power Sources 196 (20) (2011) 8644–8650.

DOI: 10.1016/j.jpowsour.2011.06.050

Google Scholar

[24] Chen, J., Liu, X., & Su, Z.-X., Facile synthesis and characterisation of dandelion-like V2O3 core–shell microspheres. Micro & Nano Letters 6 (3) (2011) 102.

DOI: 10.1049/mnl.2010.0207

Google Scholar

[25] X. Yi, X. Wang, X. Zhang, B. Dai, Acta Chim. Sin. 40 (1982) 1111.

Google Scholar

[26] Zhang, Y., Huang, C., Meng, C., & Hu, T., A novel route for synthesis and growth formation of metal oxides microspheres: Insights from V 2 O 3 microspheres. Materials Chemistry and Physics 177 (2016) 543–553.

DOI: 10.1016/j.matchemphys.2016.04.067

Google Scholar

[27] N.K. Nag, F.E. Massoth, ESCA and gravimetric reduction studies on V/Al2O3, and V/SiO2, J. Catal. 124 (1990) 127-132.

DOI: 10.1016/0021-9517(90)90109-w

Google Scholar

[28] J. Mendialdua, R. Casanova, Y. Barbaux, XPS studies of V2O5, V6O13, VO2 and V2O3, J. Electron Spectrosc. Relat. Phenom. 71 (1995) 249-261.

DOI: 10.1016/0368-2048(94)02291-7

Google Scholar

[29] G. Silversmit, D. Depla, H. Poelman, G. B. Marin, R. D. Gryse, Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+), J. Electron Spectrosc. Relat. Phenom. 135 (2004) 167-175.

DOI: 10.1016/j.elspec.2004.03.004

Google Scholar

[30] C.D. Wagner, A.V. Naumkin, A. Kraut-Vass, J.W. Allison, C.J. Powell, J.R. Rumble, Jr., NIST X-ray photoelectron spectroscopy database, version 3.3 (web version), 2003, http://srdata.nist.gov/xps.

DOI: 10.6028/nist.tn.1289

Google Scholar

[31] K.C. Satapathy, R. Parmar, B. Sahoo, Thermal decomposition of vanadyl oxalate, Ind. J. Chem. 1 (1963) 402.

Google Scholar

[32] X. Liu, G. Xie, C. Huang, Q. Xu, Y. Zhang, Y. Luo, A facile method for preparing VO2 nanobelts, Materials Letters 62 (2008) 1878–1880.

DOI: 10.1016/j.matlet.2007.10.022

Google Scholar

[33] C. H. Lai, C. K. Lin, S. W. Lee, H. Y. Li, J. K. Chang, M. J. Deng. Nanostructured Na-doped vanadium oxide synthesized using an anodic deposition technique for supercapacitor applications[J]. J.Alloy.Compd, 536 S (2012) S428-S431.

DOI: 10.1016/j.jallcom.2011.12.038

Google Scholar

[34] N. N. Wang, Y. F. Zhang, T. Hu, Y. F. Zhao, C. G. Meng. Facile hydrothermal synthesis of ultra high-aspect-ratio V2O5 nanowires for high-performance supercapacitors[J]. Curr. Appl.Phys. 15 (2015) 493-498.

DOI: 10.1016/j.cap.2015.01.026

Google Scholar

[35] J. Yang, T. B. Lan, J. D. Liu, Y. F. Song, M. D. Wei. Supercapacitor electrode of hollow spherical V2O5 with a high pseudocapacitance in aqueous solution[J]. Electrochimica Acta, 105 (2013) 489-495.

DOI: 10.1016/j.electacta.2013.05.023

Google Scholar