Preparation of Porous CoS2 Nanostructures for Highly Efficient Electrocatalytic Hydrogen Evolution

Article Preview

Abstract:

In response to global energy and environmental issues, development of efficient and robust earth-abundant electrocatalysts for hydrogen evolution reaction is particularly meaningful. In this study, a facile hydrothermal method is developed to synthesize porous CoS2 nanostructures by using sulfur powder and thiourea as sulfur sources on carbon cloths for highly efficient hydrogen evolution reactions. The huge load of CoS2 on carbon cloth,their unique porous nanostructures equiped CoS2 nanomaterials with excellent electrocatalytic properties. The remarkable HER catalytic performance was achieved with -67 mV at a current density -10 mA cm-2 and the Tafel slope 62 mV dec-1 in 0.5 M H2SO4 solution. The overpotential of HER only lost 2 mV after 1000 cycles with remarkable stability. I think this work opens up a low cost and scalable route to fabricate transition metal-based materials for application in electrocatalysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

643-649

Citation:

Online since:

January 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Ma, J. Wang, D. Liu, Hydrazine-assisted electrolytic hydrogen production: CoS2 nanoarray as a superior bifunctional electrocatalyst, New J. Chem. 2017, 41, 4754-4757.

DOI: 10.1039/c7nj00326a

Google Scholar

[2] I. Roger, M. A. Shipman, M. D. Symes, Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting, Nature Reviews Chemistry. 2017, 1, 41570-41582.

DOI: 10.1038/s41570-016-0003

Google Scholar

[3] N. Kornienko, J. Resasco, N. Becknell, Operando spectroscopic analysis of an amorphous cobalt sulfide hydrogen evolution electrocatalyst, J. Am. Chem. Soc. 2015, 137, 7448-7455.

DOI: 10.1021/jacs.5b03545

Google Scholar

[4] A. I. Carim, F. H. Saadi, M. P. Soriaga, Electrocatalysis of the hydrogen-evolution reaction by electrodeposited amorphous cobalt selenide films, J. Mater. Chem. A, 2014, 2, 13835-13839.

DOI: 10.1039/c4ta02611j

Google Scholar

[5] M. Cabánacevedo, M. L. Stone, J. R. Schmidt, Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide, Nat. Mater. 2015, 14, 1245-1251.

DOI: 10.1038/nmat4410

Google Scholar

[6] R. Miao, B. Dutta, S. Sahoo, Mesoporous Iron Sulfide for Highly Efficient Electrocatalytic Hydrogen Evolution, J. Am. Chem. Soc. 2017, 139, 13604-13607.

DOI: 10.1021/jacs.7b07044

Google Scholar

[7] M. S. Faber, R. Dziedzic, M. A. Lukowski, N. S. Kaiser, Q. Ding, S. Jin, High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro-and nanostructures, J. Am. Chem. Soc. 2014, 136, 10053–10061.

DOI: 10.1021/ja504099w

Google Scholar

[8] C. Wang, T. y. Wang, J. j. Liu, Y. Zhou, Facile synthesis of silk-cocoon S-rich cobalt ploysulfide as an efficient catalyst for hydrogen evolution reaction, Energ. & Environ. Sci. 2018, 11, 2467-2475.

DOI: 10.1039/c8ee00948a

Google Scholar

[9] J. Wang, X. Ma, T. Liu, NiS2, nanosheet array: A high-active bifunctional electrocatalyst for hydrazine oxidation and water reduction toward energy-efficient hydrogen production, Mater. Today Energy, 2017, 3, 9-14.

DOI: 10.1016/j.mtener.2017.02.002

Google Scholar

[10] J. Yang, Z. Yang, L. H. Li, Highly efficient oxygen evolution from CoS2/CNT nanocomposites via a one-step electrochemical deposition and dissolution method, Nanoscale, 2017, 9, 6886-6894.

DOI: 10.1039/c7nr01293d

Google Scholar

[11] K. Ao, D. Li, Y. Yao, Fe-doped Co9S8, Nanosheets on carbon fiber cloth as pH-universal freestanding electrocatalysts for efficient hydrogen evolution. Electrochim. Acta, 2018, 264, 157-165.

DOI: 10.1016/j.electacta.2018.01.080

Google Scholar

[12] J. Hao, W. Yang, Z. Peng, A nitrogen doping method for CoS2 electrocatalysts with enhanced water oxidation performance, Acs Catal. 2017, 7, 4214-4220.

DOI: 10.1021/acscatal.7b00792

Google Scholar

[13] J. Zhang, W. Xiao, P. Xi, Activating and optimizing activity of CoS2 for hydrogen evolution reaction through the synergic effect of N dopants and S vacancies, Acs Energy Lett. 2017, 2, 1022-1028.

DOI: 10.1021/acsenergylett.7b00270

Google Scholar

[14] M. S. Faber, R. Dziedzic, M. A. Lukowski, High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures, J. Am. Chem. Soc. 2014, 136, 10053-10061.

DOI: 10.1021/ja504099w

Google Scholar

[15] Q. Wang, R. Zou, W. Xia, Facile synthesis of ultrasmall CoS2 nanoparticles within thin N-doped porous carbon shell for high performance lithium-ion batteries, Small, 2015, 11, 2511-2517.

DOI: 10.1002/smll.201403579

Google Scholar

[16] H. Zhang, Y. Li, G. Zhang, Metallic CoS2 nanopyramid array grown on 3D carbon fiber paper as an excellent electrocatalyst for hydrogen evolution, J. Mater. Chem. A 2015, 3, 6306-6310.

DOI: 10.1039/c5ta00707k

Google Scholar

[17] Y. Hua, H. Jiang, H. Jiang, Hierarchical porous CoS2, microboxes for efficient oxygen evolution reaction, Electrochim. Acta, 2018, 278, 219-225.

DOI: 10.1016/j.electacta.2018.05.028

Google Scholar

[18] J. Zhang, Y. Liu, B. Xia, Facile one-step synthesis of phosphorus-doped CoS2 as efficient electrocatalyst for hydrogen evolution reaction, Electrochim. Acta, 2017, 259, 955-961.

DOI: 10.1016/j.electacta.2017.11.043

Google Scholar

[19] M. S. Faber, M. A. Lukowski, Q. Ding, N. S. Kaiser, S. Jin, Earth-abundant metal pyrites (FeS2, CoS2, NiS2, and Their Alloys) for highly efficient hydrogen evolution and polysulfide reduction electrocatalysis, J. Phys. Chem. C.2014, 118, 21347-21356.

DOI: 10.1021/jp506288w

Google Scholar

[20] H. Zhang, Y. Li, T. Xu, Amorphous Co-doped MoS2 nanosheet coated metallic CoS2 nanocubes as an excellent electrocatalyst for hydrogen evolution, J. Mater. Chem. A 2015, 3, 15020-15023.

DOI: 10.1039/c5ta03410h

Google Scholar

[21] J. Zhang, W. Xiao, P. Xi, Activating and optimizing activity of CoS2 for hydrogen evolution reaction through the synergic effect of N dopants and S vacancies, ACS Energy. Lett. 2017, 2, 1022-1028.

DOI: 10.1021/acsenergylett.7b00270

Google Scholar

[22] P. Ganesan, A. Sivanantham, S. Shanmugam, CoS2–TiO2 hybrid nanostructures: efficient and durable bifunctional electrocatalysts for alkaline electrolyte membrane water electrolyzers, J. Mater. Chem. A 2018, 6, 1075-1085.

DOI: 10.1039/c7ta09096j

Google Scholar

[23] R. Zhang, X. Wang, S. Yu, Ternary NiCo2Px nanowires as ph-universal electrocatalysts for highly efficient hydrogen evolution reaction, Adv. Mater. 2016, 29, 1605502.

DOI: 10.1002/adma.201605502

Google Scholar

[24] M. Nakayama, F. Kotaro, T. Kobayakawa, A binder-free thin film anode composed of Co2+-intercalated buserite grown on carbon cloth for oxygen evolution reaction, Electrochem. Commun. 2017, 84, 24–27.

DOI: 10.1016/j.elecom.2017.09.012

Google Scholar

[25] M. Ma, G. Zhu, F. Xie, F. Qu, Z. Liu, G. Du, Homologous catalysts based on Fe-doped CoP nanoarrays for high-performance full water splitting under benign conditions, ChemSusChem. 2017, 10, 3188–3192.

DOI: 10.1002/cssc.201700693

Google Scholar

[26] C. Ouyang, X. Wang, S. Wang, Phosphorus-doped CoS2 nanosheet arrays as ultra-efficient electrocatalysts for the hydrogen evolution reaction, Chem. Commun. 2015, 51,14160-14163.

DOI: 10.1039/c5cc05541e

Google Scholar

[27] M.Zheng, Y. Ding, L. Yu, X. Du, Y. Zhao, In situ grown pristine cobalt sulfide as bifunctional photocatalyst for hydrogen and oxygen evolution, Adv. Funct. Mater. 2017, 27, 1605846.

DOI: 10.1002/adfm.201605846

Google Scholar

[28] W. Xiong, Z. Guo, H. Li, R. Zhao, X. Wang,Rational bottom-up engineering of electrocatalysts by atomic layer deposition: a case study of FexCo1-xSy-based catalysts for electrochemical hydrogen evolution, ACS Energy. Lett. 2017, 2, 2778–2785.

DOI: 10.1021/acsenergylett.7b01056

Google Scholar

[29] S. Y. Huang, D. Sodano, T. Leonard, S. Luiso, P. S. Fedkiw, Cobalt-doped iron sulfide as an electrocatalyst for hydrogen evolution, J. Electrochem. Soc. 2017, 164, 276–282.

DOI: 10.1149/2.0761704jes

Google Scholar