[1]
S.S.P. Parkin, C. Kaiser, A. Panchula, P.M. Rice, B. Hughes, M. Samant, S.H. Yang, Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers, Nature Mater. 3 (2004) 862-867.
DOI: 10.1038/nmat1256
Google Scholar
[2]
S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, K. Ando, Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions, Nature Mater. 3 (2004) 868-871.
DOI: 10.1038/nmat1257
Google Scholar
[3]
K. Tsunekawa, D. D. Djayaprawira, M. Nagai, H. Maehara, S. Yamagata, N. Watanabe, S. Yuasa, Y. Suzuki, K. Ando, Giant tunneling magnetoresistance effect in low-resistance CoFeB/MgO(001)/CoFeB magnetic tunnel junctions for read-head applications, Appl. Phys. Lett. 87 (2005) 072503.
DOI: 10.1063/1.2012525
Google Scholar
[4]
Y. Shiratsuchi, M. Yamamoto, S.D. Bader, Magnetism and Surface Structure of Atomically Controlled Ultrathin Metal Films, Prog. Surf. Sci. 82 (2007) 121-160.
DOI: 10.1016/j.progsurf.2006.08.001
Google Scholar
[5]
N. Nishimura, T. Hirai, A. Koganei, T. Ikeda, K. Okano, Y. Sekiguchi, Y. Osada, Magnetic tunnel junction device with perpendicular magnetization films for high-density magnetic random access memory, J. Appl. Phys. 91 (2002) 5246-5249.
DOI: 10.1063/1.1459605
Google Scholar
[6]
M. Bowen, V. Cros, F. Petroff, A. Fert, Large magnetoresistance in Fe/MgO/FeCo(001) epitaxial tunnel junctions on GaAs(001), Appl. Phys. Lett. 79 (2001) 1655-1657.
DOI: 10.1063/1.1404125
Google Scholar
[7]
H. Ohmori, T. Hatori, S. Nakagawa, Perpendicular magnetic tunnel junction with tunneling magnetoresistance ratio of 64% using MgO (100) barrier layer prepared at room temperature, J. Appl. Phys. 103 (2008) 07A911.
DOI: 10.1063/1.2840016
Google Scholar
[8]
B. Carvello, C. Ducruet, B. Rodmacq, S. Auffret, E. Gautier, G. Gaudin, B. Dieny, Sizable room-temperature magnetoresistance in cobalt based magnetic tunnel junctions with out-of-plane anisotropy, Appl. Phys. Lett. 92 (2008) 102508.
DOI: 10.1063/1.2894198
Google Scholar
[9]
I. Yoo, D.K. Kim, Y.K. Kim, Switching characteristics of submicrometer magnetic tunnel junction devices with perpendicular anisotropy, J. Appl. Phys. 97 (2005) 10C919.
DOI: 10.1063/1.1854282
Google Scholar
[10]
Y. Ochiai, S. Hashimoto, K. Aso, Co/Pt and Co/Pd ultrathin-multilayered films as new magneto-optical recording materials, IEEE Trans. Magn. 25 (2002) 3755-3757.
DOI: 10.1109/20.42423
Google Scholar
[11]
L. Néel, Magnetic surface anisotropy and superlattice formation by orientation, J. Phys. Radium 15 (1954) 225-239.
Google Scholar
[12]
F.A. Shah, V.K. Sankar, P. Li, G. Csaba, Compensation of orange-peel coupling effect in magnetic tunnel junction soft layer via shape engineering for nanomagnet logic applications, J. Appl. Phys. 115 (2014) 17B902.
DOI: 10.1063/1.4863935
Google Scholar
[13]
L. Li, F. Zhang, N. Wang, Y. F. Lv, X. Y. Han, J. J. Zhang, Interlayer exchange coupling and its temperature dependence in [Pt/Co]4/MgO/[Co/Pt]2 perpendicular magnetic tunnel junctions, J. Appl. Phys. 108 (2010) 073908.
DOI: 10.1063/1.3490134
Google Scholar
[14]
P. Bruno, Theory of intrinsic and thermally induced interlayer magnetic coupling between ferromagnetic films separated by an insulating layer, Phys. Rev. B 49 (1994) 13231-13234.
DOI: 10.1103/physrevb.49.13231
Google Scholar
[15]
C.M. Lee, J.M. Lee, L.X. Ye, S.Y. Wang, Y.R. Wang, T.H. Wu, Effects of MgO Barrier Thickness on Magnetic Anisotropy Energy Constant in Perpendicular Magnetic Tunnel Junctions of (Co/Pd) /MgO/(Co/Pt), IEEE trans. Magn. 44 (2008) 2558-2561.
DOI: 10.1109/tmag.2008.2002594
Google Scholar
[16]
E.C. Stoner, E.P. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys, IEEE Transactions on Magnetics, 27 (2003) 3475-3518.
DOI: 10.1109/tmag.1991.1183750
Google Scholar
[17]
Te-Ho. Wu, H. Fu, R. A. Hajjar, M. Mansuripur, Measurement of magnetic anisotropy constant for magneto-optical recording media: A comparison of several techniques, J. Appl. Phys. 73 (1993) 1368-1376.
DOI: 10.1063/1.353256
Google Scholar