[1]
Y.F. Jin, Z.F. Wang, L. Zhao, P.C. Lim, J. Wei and C.K. Wong, Zr/V/Fe thick film for vacuum packaging of MEMS, J. Micromech. Microeng. 14 (2004) 687-692.
DOI: 10.1088/0960-1317/14/5/005
Google Scholar
[2]
F. Sutara, I. Matolinova, T. Skala, Residual surface oxide on ZrV getter-XPS, LEIS and SIMS study, Vacuum. 74 (2004) 305-309.
DOI: 10.1016/j.vacuum.2003.12.144
Google Scholar
[3]
V. Matolin, J. Drbohlav, K. Masek, Mechanism of non-evaporable getter activation XPS and static SIMS study of Zr44V56 alloy, Vacuum. 71 (2003) 317-322.
DOI: 10.1016/s0042-207x(02)00756-x
Google Scholar
[4]
V. Matolin, K. Masek, I. Matolinova, XPS and SIMS study of the ageing mechanism of Zr-V non-evaporable getter films, Appl. Surf. Sci. 235 (2004) 202-206.
DOI: 10.1016/j.apsusc.2004.05.125
Google Scholar
[5]
C. Benvenuti, P. Chiggiato, P.C. Pinto, Influence of the substrate coating temperature on the vacuum properties of Ti-Zr-V non-evaporable getter films, Vacuum. 71(1-2) (2003) 307-315.
DOI: 10.1016/s0042-207x(02)00755-8
Google Scholar
[6]
P. Chiggiato, P.C. Pinto, Ti-Zr-V non-evaporable getter films: From development to large scale production for the Large Hadron Collider, Thin Solid Films. 515 (2006) 382-388.
DOI: 10.1016/j.tsf.2005.12.218
Google Scholar
[7]
C.C. Li, J.L. Huang, R.J. Lin, Characterization of activated non-evaporable porous Ti and Ti-Zr-V getter films by synchrotron radiation photoemission spectroscopy, Thin Solid Films. 515 (2006) 1121-1125.
DOI: 10.1016/j.tsf.2006.07.052
Google Scholar
[8]
C.C. Li, J.L. Huang, R.J. Lin, Preparation and characterization of non-evaporable porous Ti-Zr-V getter films, Surf. Coat. Technol. 201 (2006) 3977-3981.
DOI: 10.1016/j.surfcoat.2006.08.018
Google Scholar
[9]
C.C. Li, J.L. Huang, R.J. Lin, Activation characterization of non-evaporable Ti-Zr-V getter films by synchrotron radiation photoemission spectroscopy, Thin Solid Films. 517 (2009) 5876-5880.
DOI: 10.1016/j.tsf.2007.06.102
Google Scholar
[10]
Y.H. Xu, J.D. Cui, H. Cui, ZrCoCe Getter Films for MEMS Vacuum Packaging, J. Electron. Mater. 45 (2016) 386-390.
DOI: 10.1007/s11664-015-4098-5
Google Scholar
[11]
T.B. Zhang, M. Zhang, R. Hu, Hydrogen absorption behavior of a Pd-coated Zr70Fe5.4V24.6 getter material against gaseous impurities, Vacuum. 122 (2015) 222-229.
DOI: 10.1016/j.vacuum.2015.10.007
Google Scholar
[12]
J.G. Bu, C.H. Mao, Y. Zhang, Preparation and sorption characteristics of Zr-Co-RE getter films, J Alloy Compd. 529 (2012) 69-72.
DOI: 10.1016/j.jallcom.2012.01.030
Google Scholar
[13]
D. Petti, M. Cantoni, M. Leonea, Activation of Zr-Co-rare earth getter films: An XPS study, Appl. Surf. Sci. 256 (2010) 6291-6296.
DOI: 10.1016/j.apsusc.2010.04.006
Google Scholar
[14]
798-97 ASTM, Standard Practice for Determining Gettering Rate, Sorption Capacity, and Gas Content of Non-Evaporable Getters in the Molecular Flow Region, (2002).
DOI: 10.1520/f0798-97
Google Scholar
[15]
K. Chuntonov, A. Ivanov, D. Permikin, New lithium gas sorbents II. A mathematical model of the evaporation process, J Alloy Compd. 456(2008) 187-193.
DOI: 10.1016/j.jallcom.2007.02.065
Google Scholar