Effect of the Gamma-Ray Irradiation on the Properties of an Epoxy Encapsulant

Article Preview

Abstract:

The influence of 60Co gamma-ray irradiation on the chemical compositions and properties of an epoxy encapsulant was investigated. The total irradiation dose varied from 0.1 kGy to 100 kGy with a fixed dose rate of 500 Gy/h. Fourier transform infrared spectra, X-ray photoelectron spectroscopy analysis and discoloration proved the occurrence of oxidation caused by the irradiation. Tg and density remained unchanged owing to the competing effects of irradiation-induced degradation and crosslinking. The tensile strength, impact strength and electrical strength did not decrease distinctly until the irradiation dose reached above 11 kGy. Rubbery coefficient of linear thermal expansion (CTE), relative permittivity and dissipation factor, on the contrary, were more sensitive to the oxidation and increased sharply when the irradiation dose was only 0.1 kGy. Our results suggested that the evolution of CTEs and dielectric properties could affect the long-term application and reliability of the epoxy encapsulant in the irradiative environment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

600-606

Citation:

Online since:

January 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. L. Sham, J. K. Kim, Experiment and numerical analysis of the residual stresses in underfill resins for flip chip package applications. J. Electron. Packaging. 127 (2005) 47-51.

DOI: 10.1115/1.1849232

Google Scholar

[2] B. X. Du, X. X. Kong, Y. Q. Xing, J. Li, Trap Distribution of Electron Beam Irradiated Epoxy Resin under Repetitive Pulse Voltage. IEEE T. Dielect. El. In. 24 (2017) 3869-3877.

DOI: 10.1109/tdei.2017.006294

Google Scholar

[3] C. Wei, W. Pan, S. Sun, H. Liu, Irradiation effects on a glycidylamine epoxy resin system for insulation in fusion reactor. J. Nucl. Mater. 429 (2012) 113-117.

DOI: 10.1016/j.jnucmat.2012.05.040

Google Scholar

[4] J. Leng, F. Xie, X. Wu, Y. Liu, Effect of the gamma-radiation on the properties of epoxy-based shape memory polymers. J. Intel. Mat. Syst. Str. 25 (2014) 1256-1263.

Google Scholar

[5] T. Devanne, A. Bry, L. Audouin, J. Verdu, Radiochemical ageing of an amine cured epoxy network. Part I: change of physical properties. Polymer. 46 (2005) 229-236.

DOI: 10.1016/j.polymer.2004.07.039

Google Scholar

[6] Z. X. Wu, J. W. Li, C. J. Huang, R. J. Huang, L. F. Li, Effect of gamma irradiation on the mechanical behavior, thermal properties and structure of epoxy/glass-fiber composite. J. Nucl. Mater. 441 (2013) 67-72.

DOI: 10.1016/j.jnucmat.2013.05.041

Google Scholar

[7] K. Y. Lee, K. Y. Kim, I. R. Hwang, Y. S. Choi, C. H. Hong, Thermal, tensile and morphological properties of gamma-ray irradiated epoxy-clay nanocomposites toughened with a liquid rubber. Polym. Test. 29 (2010) 139-146.

DOI: 10.1016/j.polymertesting.2009.10.003

Google Scholar

[8] C. Galant, B. Fayolle, M. Kuntz, J. Verdu, Thermal and radio-oxidation of epoxy coatings. Prog. Org. Coat. 69 (2010) 322-329.

DOI: 10.1016/j.porgcoat.2010.07.005

Google Scholar

[9] S. Hong, The thermal-oxidative degradation of an epoxy adhesive on metal substrates: XPS and RAIR analysis. Polym. Degrad. Stabil., 48 (1995) 211-218.

DOI: 10.1016/0141-3910(95)00042-k

Google Scholar

[10] G. Z. Xiao, M. Delamar, M. Shanahan, Irreversible interaction between water and DGEBA/DDA epoxy resin during hygrothermal aging. J. Appl. Polym. Sci. 65 (1997) 449-458.

DOI: 10.1002/(sici)1097-4628(19970718)65:3<449::aid-app4>3.0.co;2-h

Google Scholar

[11] F. Diao, Y. Zhang, Y. Liu, J. Fang, W. Luan, g-Ray irradiation stability and damage mechanism of glycidyl amine epoxy system. Nucl. Instrum. Meth. B 383 (2016) 227-233.

DOI: 10.1016/j.nimb.2016.07.009

Google Scholar

[12] K. T. Gillen, M. Celina, R. L. Clough, Density measurements as a condition monitoring approach for following the aging of nuclear power plant cable materials. Radiat. Phys. Chem. 56 (1999) 429-447.

DOI: 10.1016/s0969-806x(99)00333-3

Google Scholar

[13] M. Ogata, N. Kinjo, T. Kawata, Effects of cross-linking on physical-properties of phenol formaldehyde novolac cured epoxy-resins. J. Appl. Polym. Sci. 48 (1993) 583-601.

DOI: 10.1002/app.1993.070480403

Google Scholar

[14] F. Tian, Y. Ohki, Charge transport and electrode polarization in epoxy resin at high temperatures. J. Phys. D Appl. Phys. 47 (2014) 45311-45319.

DOI: 10.1088/0022-3727/47/4/045311

Google Scholar

[15] M. Miyamoto, N. Tomite, Y. Ohki, Comparison of Gamma-ray Resistance between Dicyclopentadiene Resin and Epoxy Resin. IEEE T. Dielect. El. In. 23 (2016) 2270-2277.

DOI: 10.1109/tdei.2016.7556503

Google Scholar

[16] J. R. Laghari, A. N. Hammoud, A brief survey of radiation effects on polymer dielectrics. IEEE T. Nucl. Sci. 37 (1990) 1076-1083.

DOI: 10.1109/tns.1990.574201

Google Scholar