Structural-Phase State of the Diamond-Matrix Transition Zone in Hard-Alloy Diamond-Containing Composites with Diffusion Metallization of Diamonds during Sintering with Impregnation

Article Preview

Abstract:

The conducted study belongs to a field of fundamental and application-oriented issues of interphase interaction and formation of interfacial layers between a filler and matrix during the synthesis of composite systems. The factors determining the strength of the diamonds retention in a hard-alloy matrix of abrasive composites obtained by the hybrid synthesis technology with thermal diffusion metallization of diamond particles and sintering by a scheme of the self-metering impregnation were studied. Chemical composition, morphology and distribution of the reaction products, the nature of the resulting carbon phases in the contact zone between the diamond and matrix were investigated using scanning electron microscopy, X-ray phase analysis, Raman spectroscopy and atomic force microscopy. It was found that the increase of physical and chemical adhesion of diamond with the matrix during the synthesis of composites by the developed technology occurs due to the formation of high nano- and submicronic roughness of the diamond surface, formation of island-type metallized coating, dense filling of gaps by nanoscale layers of metal-infiltrate. Free carbon (graphite) was found in small quantities in the form of micron dimension separate inclusions. The revealed multilevel hierarchy of the high-structured morphological forms of the elements of the transitional layers has provided the solidity and strength of the joint between diamond and matrix.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

763-770

Citation:

Online since:

February 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.P. Sharin, G.M. Nikitin, M.P. Lebedev, V.P. Atlasov, V.I. Popov, Patent RU 2607393. (2017).

Google Scholar

[2] A.M. Isonkin, R.K. Bogdanov, Vliyanie metallizatsii almazov na pokazateli rabotosposobnosti burovykh koronok [Effect of diamond metallization on the performance of drilling bits], Naukovi pratsi DonNTU. Seriya «Girnicho-geologichna». 181 (2011) 158–163.

Google Scholar

[3] P.P. Sharin, S.P. Yakovleva, V.E. Gogolev, M.I. Vasil'eva, Strukturnaya organizaciya vysokoiznosostojkih almazosoderzhashchih kompozitov na osnove tverdosplavnyh poroshkov, poluchennyh metodom spekaniya s propitkoj med'yu [Structural organization of highly wear-resistant diamond-containing composites based on carbide powders obtained by sintering with copper impregnation]. Perspektivnye materialy. 6 (2015) 66–77.

Google Scholar

[4] T. Schubert, B. Trindade, T. Weißgärber, B. Kieback, Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications, Materials Science and Engineering. 475 (2008) 39–44.

DOI: 10.1016/j.msea.2006.12.146

Google Scholar

[5] A. Molinari, F. Marchetti, S. Cialanella, Р. Scardi, A. Tiziani, Study of the diamond-matrix interface in hot-pressed cobalt-based tools, Materials Science and Engineering: A. 130 (1990) 257–262.

DOI: 10.1016/0921-5093(90)90066-c

Google Scholar

[6] D.A. Sidorenko, E.A. Levashov, P.A. Loginov, N.V. Shvyndina, E.A. Skryleva, I.E. Uskova, O mekhanizme samoproizvol'nogo plakirovaniya almaza karbidom vol'frama v processe spekaniya instrumenta s nanomodificirovannoj metallicheskoj svyazkoj Su–Fe–Co–Ni [Mechanism of spontaneous diamond plating with tungsten carbide during the sintering of a tool with nanomodified Cu-Fe-Co-Ni metal bond]. Izvestiya vuzov. Cvetnaya metallurgiya. 5 (2015) 53–63.

DOI: 10.17073/0021-3438-2015-5-53-63

Google Scholar

[7] W. Tillmann, M. Ferreira, A. Steffen, K. Rüster, J. Möller, S. Bieder, M. Paulus, M. Tolan, Carbon reactivity of binder metals in diamond-metal composites –characterization by scanning electron microscopy and X-ray diffraction, Diamond and Related Materials. 38 (2013) 118-123.

DOI: 10.1016/j.diamond.2013.07.002

Google Scholar

[8] W.S. Li, J. Zhang, H. Dong, K. Chu, S. Wang, Y. Liu, Y. Li, Thermodynamic and kinetic study on interfacial reaction and diamond graphitization of Cu-Fe-based diamond composite, Chinese Physics B. 22 (2013) 18102.

DOI: 10.1088/1674-1056/22/1/018102

Google Scholar

[9] M.M. Yakhutlov, B.S. Karamurzov, Z.Zh. Berov, U.D. Batyrov, R.M. Nartyzhev, Napravlennoe formirovanie mezhfaznoj granicy almaz-matrica s ispol'zovaniem nanopokrytij [Directional formation of the interface boundary of a diamond-matrix using nanocoatings]. Izv. Kabardino-Balkarskogo gosuniversiteta. 1 (2011) 23–25.

Google Scholar

[10] Yu.V. Naidich, V.P. Umanskii, I.A. Lavrinenko, Issledovanie prochnosti stsepleniya almaza s metallom [Study of the diamond-metal bonding strength], Sverkhtverdye materialy. 6 (1984) 19–23.

Google Scholar

[11] P.P. Sharin, M.P. Lebedev, V.E. Gogolev, R.G. Nogovitsyn, P.A. Slobodchikov, Patent RU 2478455 (2013).

Google Scholar

[12] J.L. Lauer, Raman Spectra of Quasi-Elemental Carbon, in: I.R. Lewis, H.G.M. Edwards (Eds.), Handbook of Raman Spectroscopy, Marsel Dekker, New York, 2001, pp.863-917.

Google Scholar

[13] S.V. Tikhomirov, T.B. Kimstach, Spektroskopiya kombinatsionnogo rasseyaniya – perspektivnyi metod issledovaniya uglerodnykh nanomaterialov [Raman spectroscopy is a promising method for studying carbon nanomaterials], Analitika. 1 (2011) 28–32.

Google Scholar

[14] V.A. Loktyushin, L.M. Gurevich, Poluchenie nanotolshchinnyh metallicheskih pokrytij na sverhtverdyh materialah metodom termodiffuzionnoj metallizacii [Obtaining nano-thick metal coatings on superhard materials by thermal diffusion metallization]. Izvestiya Volzhskogo gosudarstvennogo tekhnicheskogo universiteta. 11 (2009) 50–54.

Google Scholar

[15] A.V. Nozhkina, Vliyanie metallov na fazovoe prevrashchenie almaza v grafit [The influence of metals on the phase transformation of diamond into graphite], Sverkhtverdye materialy. 3 (1988) 11–15.

Google Scholar

[16] C.P. Bushmer, P.H. Crayton, Carbon self-diffusion in tungsten carbide, J.Mater.Sci. 6 (1971) 981-988.

DOI: 10.1007/bf00549949

Google Scholar

[17] N.V. Tsypin, E.S. Simkin, G.D. Kostenetskaya, Metallograficheskoe issledovanie vzaimodeistviya almazov s metallami pri vysokikh temperaturakh [Metallographic study of diamonds interaction with metals at high temperatures], Adgeziya i paika materialov. 4 (1979) 78–80.

Google Scholar

[18] Z.D. Lin, R.A. Queeney, Interface bonding in a diamond/metal matrix composite, in: Proceedings of the 1988 International Powder Metallurgy Conference, American Powder Metallurgy Inst., Orlando, 1997, pp.443-450.

Google Scholar

[19] C.M. Sung, M.F. Tai, Reactivities of transition metals with carbon: Implications to the mechanism of diamond synthesis under high pressure, Intern. Jour. of Refractory Metals & Hard Materials. 15 (1997) 237-256.

DOI: 10.1016/s0263-4368(97)00003-6

Google Scholar

[20] C. Artini, M.L. Muolo, A. Passerone, Diamond–metal interfaces in cutting tools: a review, Journal of Materials Science. 47 (2012) 3252-3264.

DOI: 10.1007/s10853-011-6164-6

Google Scholar

[21] W.Q. Qiu, Z.W. Liu, L.X. He, D.C. Zeng, Y.-W. Mai, Improved interfacial adhesion between diamond film and copper substrate using a Cu (Cr)-diamond composite interlayer, Mater. Lett. 81 (2012) 155–157.

DOI: 10.1016/j.matlet.2012.05.015

Google Scholar