Control Quality of Composite Materials by Using Subminiature Eddy Current Transducers

Article Preview

Abstract:

Based eddy current transducer (ECT), a probe has been designed to research composite materials. Defects inspection of composite materials is performed to determine the following standard defects: defect of the metallic and (or) polymer layer uniformity. The subminiature ECT of the original design is used as a sensor in this device, it is made according to a differential scheme of switching on of the coils of a transformer ECT and allowing to localize the control area up to 0.1-0.5 mm. The measurement procedure allowing one to detect defects in composite materials with a high accuracy is described. The sensor was tested on the composite material consisting of paper or low-density polyethylene and aluminum layers in which the model defect was placed. The dependences of the ECT signal on the defect in this structure are given. The determined dependence of electrical conductivity of composite materials on model defects make it possible to carry out defects inspection of composite materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

866-872

Citation:

Online since:

February 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Gerasimov, V.Kluev, Methods and devices of electromagnetic control, SPEKTR, Moscow, (2010).

Google Scholar

[2] R. Mak-Master, Non-destructive testing: reference book, ENERGIYA, Moscow, (1965).

Google Scholar

[3] A. Katunin, M. Danczak, P. Kostka, Automated identification and classification of internal defects in composite structures using computed tomography and 3D wavelet analysis, Arch. of Civ. Mech. Eng. 15(2) (2015) 436-448.

DOI: 10.1016/j.acme.2014.08.002

Google Scholar

[4] W. J. Staszewski, S. Mahzan, R. Traynor, Health monitoring of aerospace composite structures – Active and passive approach, Comp. Sci. Tech., 69(11–12) (2009) 1678-1685.

DOI: 10.1016/j.compscitech.2008.09.034

Google Scholar

[5] A. Katunin, K. Dragan, M. Dziendzikowski, Damage identification in aircraft composite structures: A case study using various nondestructive testing techniques, Comp. structur. 127 (2015) 1-9.

DOI: 10.1016/j.compstruct.2015.02.080

Google Scholar

[6] C. Maierhofer, P. Myrach, M. Reischel, H. Steinfurth, Characterizing damage in CFRP structures using flash thermography in reflection and transmission configurations, Comp. Part B: Eng. 57 (2014) 35-46.

DOI: 10.1016/j.compositesb.2013.09.036

Google Scholar

[7] T. H. Loutas, A. Panopoulou, D. Roulias, Intelligent health monitoring of aerospace composite structures based on dynamic strain measurements, Exp. Sys. with Applic. 39(9) (2012) 8412-8422.

DOI: 10.1016/j.eswa.2012.01.179

Google Scholar

[8] D. D. Rizos, S. D. Fassois, Z. P. Marioli-Riga, Vibration-based skin damage statistical detection and restoration assessment in a stiffened aircraft panel, Mech. Sys.Signal Proc. 22(2) (2008) 315-337.

DOI: 10.1016/j.ymssp.2007.07.012

Google Scholar

[9] C. Meola, G. M. Carlomagno, Infrared thermography to evaluate impact damage in glass/epoxy with manufacturing defects, Int. Journal Imp. Eng. 67 (2014) 1-11.

DOI: 10.1016/j.ijimpeng.2013.12.010

Google Scholar

[10] R. Růžek, R. Lohonka, J. Jironč, Ultrasonic C-Scan and shearography NDI techniques evaluation of impact defects identification, NDT & E Int. 39(2) (2006) 132-142.

DOI: 10.1016/j.ndteint.2005.07.012

Google Scholar

[11] D. J. Bull, S. M. Spearing, I. Sinclair, L. Helfen, Three-dimensional assessment of low velocity impact damage in particle toughened composite laminates using micro-focus X-ray computed tomography and synchrotron radiation laminography, Comp. Part A: Appl. Sci. Manuf. 52(1) (2013) 62-69.

DOI: 10.1016/j.compositesa.2013.05.003

Google Scholar

[12] S. Grondel, J. Assaad, C. Delebarre, E. Moulin, Health monitoring of a composite wingbox structure, Ultrasonics. 42(1–9) (2004) 819-824.

DOI: 10.1016/j.ultras.2004.01.058

Google Scholar

[13] U. Polimeno, M. Meo, Detecting barely visible impact damage detection on aircraft composites structures, Comp. struct. 91(4) (2009) 398-402.

DOI: 10.1016/j.compstruct.2009.04.014

Google Scholar

[14] T. H. Loutas, A. Panopoulou, Intelligent health monitoring of aerospace composite structures based on dynamic strain measurements, Expert Sys. with App. 39(9) (2012) 8412-8422.

DOI: 10.1016/j.eswa.2012.01.179

Google Scholar

[15] K. Warnemuende, Amplitude modulated acousto-ultrasonic non-destructive testing: Damage evaluation in concrete, Ph.D. Wayne State University, Ann Arbor, (2006).

Google Scholar

[16] I. Oguma, R. Goto, T. Sugiura, Ultrasonic inspection of an internal flaw in a ferromagnetic specimen using angle beam EMATs, Przeglad Elektrotechniczny. 88(7B) (2012) 78-81.

Google Scholar

[17] K. Koyama, H. Hoshikawa, G. Kojima, Eddy Current Nondestructive Testing for Carbon Fiber- Reinforced Composites, Jour. Press. Vess. Tech. 135(4) (2013) 041501-041501.

DOI: 10.1115/1.4023253

Google Scholar

[18] S.-H. Yang, K.-B. Kim, H. G. Oh, J.-S. Kang, Non-contact detection of impact damage in CFRP composites using millimeter-wave reflection and considering carbon fiber direction, NDT & E Int. 57(1) (2013) 45-51.

DOI: 10.1016/j.ndteint.2013.03.006

Google Scholar

[19] S. F. Dmitriev, V. N. Malikov, A. M. Sagalakov, A. V. Ishkov, A. O. Katasonov, Research of aluminum alloys with using eddy-current transducers on the basis of cores of various form, IOP Conf. Ser.: Mater. Sci. Eng. 289 (2017) 1-7.

DOI: 10.1088/1757-899x/289/1/012021

Google Scholar

[20] S. F. Dmitriev, V. N. Malikov, A. M. Sagalakov, A. V. Ishkov, A. O. Katasonov, Subminiature eddy-current transducers for conductive materials and layered composites research, Advances in Intelligent Systems and Computing. 692 (2017) 655-665.

DOI: 10.1007/978-3-319-70987-1_70

Google Scholar

[21] S. F. Dmitriev, A. V. Ishkov, V. N. Malikov, A. M. Sagalakov, Measurement System for Studying Flaws in Alloy Slabs by Means of Subminiature Eddy-Current Transducers, Measur. Techn. 60(4) (2017) 372-375.

DOI: 10.1007/s11018-017-1204-5

Google Scholar

[22] S. F. Dmitriev, A. V. Ishkov, V. N. Malikov, A. M. Sagalakov, Scanning the Welded Seams of Titanium Alloys by Using Subminiature Eddy Current Transducers, Materials Science Forum. 906 (2017) 147-152.

DOI: 10.4028/www.scientific.net/msf.906.147

Google Scholar

[23] D. B. Solovev, A. S. Shadrin, Instrument current transducer for measurements in asymmetrical conditions in three-phase circuits with upper harmonics, International Journal of Electrical Power and Energy Systems. 84 (2017) 195-201. [Online]. Available: http://dx.doi.org/10.1016/j.ijepes.2016.05.012.

DOI: 10.1016/j.ijepes.2016.05.012

Google Scholar