[1]
V. Gerasimov, V.Kluev, Methods and devices of electromagnetic control, SPEKTR, Moscow, (2010).
[2]
R. Mak-Master, Non-destructive testing: reference book, ENERGIYA, Moscow, (1965).
[3]
A. Katunin, M. Danczak, P. Kostka, Automated identification and classification of internal defects in composite structures using computed tomography and 3D wavelet analysis, Arch. of Civ. Mech. Eng. 15(2) (2015) 436-448.
DOI: https://doi.org/10.1016/j.acme.2014.08.002
[4]
W. J. Staszewski, S. Mahzan, R. Traynor, Health monitoring of aerospace composite structures – Active and passive approach, Comp. Sci. Tech., 69(11–12) (2009) 1678-1685.
DOI: https://doi.org/10.1016/j.compscitech.2008.09.034
[5]
A. Katunin, K. Dragan, M. Dziendzikowski, Damage identification in aircraft composite structures: A case study using various nondestructive testing techniques, Comp. structur. 127 (2015) 1-9.
DOI: https://doi.org/10.1016/j.compstruct.2015.02.080
[6]
C. Maierhofer, P. Myrach, M. Reischel, H. Steinfurth, Characterizing damage in CFRP structures using flash thermography in reflection and transmission configurations, Comp. Part B: Eng. 57 (2014) 35-46.
DOI: https://doi.org/10.1016/j.compositesb.2013.09.036
[7]
T. H. Loutas, A. Panopoulou, D. Roulias, Intelligent health monitoring of aerospace composite structures based on dynamic strain measurements, Exp. Sys. with Applic. 39(9) (2012) 8412-8422.
DOI: https://doi.org/10.1016/j.eswa.2012.01.179
[8]
D. D. Rizos, S. D. Fassois, Z. P. Marioli-Riga, Vibration-based skin damage statistical detection and restoration assessment in a stiffened aircraft panel, Mech. Sys.Signal Proc. 22(2) (2008) 315-337.
DOI: https://doi.org/10.1016/j.ymssp.2007.07.012
[9]
C. Meola, G. M. Carlomagno, Infrared thermography to evaluate impact damage in glass/epoxy with manufacturing defects, Int. Journal Imp. Eng. 67 (2014) 1-11.
DOI: https://doi.org/10.1016/j.ijimpeng.2013.12.010
[10]
R. Růžek, R. Lohonka, J. Jironč, Ultrasonic C-Scan and shearography NDI techniques evaluation of impact defects identification, NDT & E Int. 39(2) (2006) 132-142.
DOI: https://doi.org/10.1016/j.ndteint.2005.07.012
[11]
D. J. Bull, S. M. Spearing, I. Sinclair, L. Helfen, Three-dimensional assessment of low velocity impact damage in particle toughened composite laminates using micro-focus X-ray computed tomography and synchrotron radiation laminography, Comp. Part A: Appl. Sci. Manuf. 52(1) (2013) 62-69.
DOI: https://doi.org/10.1016/j.compositesa.2013.05.003
[12]
S. Grondel, J. Assaad, C. Delebarre, E. Moulin, Health monitoring of a composite wingbox structure, Ultrasonics. 42(1–9) (2004) 819-824.
DOI: https://doi.org/10.1016/j.ultras.2004.01.058
[13]
U. Polimeno, M. Meo, Detecting barely visible impact damage detection on aircraft composites structures, Comp. struct. 91(4) (2009) 398-402.
DOI: https://doi.org/10.1016/j.compstruct.2009.04.014
[14]
T. H. Loutas, A. Panopoulou, Intelligent health monitoring of aerospace composite structures based on dynamic strain measurements, Expert Sys. with App. 39(9) (2012) 8412-8422.
DOI: https://doi.org/10.1016/j.eswa.2012.01.179
[15]
K. Warnemuende, Amplitude modulated acousto-ultrasonic non-destructive testing: Damage evaluation in concrete, Ph.D. Wayne State University, Ann Arbor, (2006).
[16]
I. Oguma, R. Goto, T. Sugiura, Ultrasonic inspection of an internal flaw in a ferromagnetic specimen using angle beam EMATs, Przeglad Elektrotechniczny. 88(7B) (2012) 78-81.
[17]
K. Koyama, H. Hoshikawa, G. Kojima, Eddy Current Nondestructive Testing for Carbon Fiber- Reinforced Composites, Jour. Press. Vess. Tech. 135(4) (2013) 041501-041501.
DOI: https://doi.org/10.1115/1.4023253
[18]
S.-H. Yang, K.-B. Kim, H. G. Oh, J.-S. Kang, Non-contact detection of impact damage in CFRP composites using millimeter-wave reflection and considering carbon fiber direction, NDT & E Int. 57(1) (2013) 45-51.
DOI: https://doi.org/10.1016/j.ndteint.2013.03.006
[19]
S. F. Dmitriev, V. N. Malikov, A. M. Sagalakov, A. V. Ishkov, A. O. Katasonov, Research of aluminum alloys with using eddy-current transducers on the basis of cores of various form, IOP Conf. Ser.: Mater. Sci. Eng. 289 (2017) 1-7.
DOI: https://doi.org/10.1088/1757-899x/289/1/012021
[20]
S. F. Dmitriev, V. N. Malikov, A. M. Sagalakov, A. V. Ishkov, A. O. Katasonov, Subminiature eddy-current transducers for conductive materials and layered composites research, Advances in Intelligent Systems and Computing. 692 (2017) 655-665.
DOI: https://doi.org/10.1007/978-3-319-70987-1_70
[21]
S. F. Dmitriev, A. V. Ishkov, V. N. Malikov, A. M. Sagalakov, Measurement System for Studying Flaws in Alloy Slabs by Means of Subminiature Eddy-Current Transducers, Measur. Techn. 60(4) (2017) 372-375.
DOI: https://doi.org/10.1007/s11018-017-1204-5
[22]
S. F. Dmitriev, A. V. Ishkov, V. N. Malikov, A. M. Sagalakov, Scanning the Welded Seams of Titanium Alloys by Using Subminiature Eddy Current Transducers, Materials Science Forum. 906 (2017) 147-152.
DOI: https://doi.org/10.4028/www.scientific.net/msf.906.147
[23]
D. B. Solovev, A. S. Shadrin, Instrument current transducer for measurements in asymmetrical conditions in three-phase circuits with upper harmonics, International Journal of Electrical Power and Energy Systems. 84 (2017) 195-201. [Online]. Available: http://dx.doi.org/10.1016/j.ijepes.2016.05.012.
DOI: https://doi.org/10.1016/j.ijepes.2016.05.012