[1]
N.E. Kryukov et al., RU Patent 2579412 C2 (2016).
Google Scholar
[2]
B.I. Dolotov et al., RU Patent 2193479 C1 (2002).
Google Scholar
[3]
A.V. Savinov et al., RU Patent 2520881 C1 (2014).
Google Scholar
[4]
N.A. Kozyrev, I.V. Igushev, D.A. Titov, O.E. Kozyreva, RU Patent 2518035 C1 (2014).
Google Scholar
[5]
E.N. Eremin, A.S. Losev, A.E. Eremin, A.E. Matalasova, RU Patent 2514754 C2 (2012).
Google Scholar
[6]
Y.N. Dubtsov, I.V. Zorin, G.N. Sokolov, V.I. Lysak, RU Patent 2 478 029 C2 (2013).
Google Scholar
[7]
Y. Suzuki, H. Abe, H. Yamamoto, K. Ito, H. Inoue, M. Nakamura, Spherical porous granules in MgO-Fe2O3-Nb2O5 system: In situ observation of formation behavior using high-temperature confocal laser-scanning microscopy, Journal of the European Ceramic Society, Vol. 37, Issue 16, (2017) 5339-5345.
DOI: 10.1016/j.jeurceramsoc.2017.05.056
Google Scholar
[8]
Y. Suzuki, H. Tokoro, H. Abe, Self-organized formation of spherical porous granules only by one-step heat-treatment in MgO-Fe2O3-Nb2O5 system, Materials Letters, Vol. 163 (2016) 43-46.
DOI: 10.1016/j.matlet.2015.10.007
Google Scholar
[9]
A.I. Rudskoy, S.Y. Kondrat'ev, Y.A. Sokolov, New approach to synthesis of powder and composite materials by electron beam. Part 1. Technological features of the process, Metal Science and Heat Treatment, Vol. 58, Issue 1 (2016) 27-32.
DOI: 10.1007/s11041-016-9959-x
Google Scholar
[10]
V.I. Lysenko, S. Bardakhanov, A. Korchagin et al., Possibilities of production of nanopowders with high power ELV electron accelerator, Bull. Mater. Sci., № 4 (34) (2011) 677-681.
DOI: 10.1007/s12034-011-0181-6
Google Scholar
[11]
N. Falaleeva, Le. Kim, Fabrication of Cements from Metallurgical Wastes, Polar Mechanics, Proceedings of the Third International Scientific Conference, №3 (2016) 740-747.
Google Scholar
[12]
I.I. Shanenkov, A.A. Sivkov, A.Ya. Pak, Yu.L. Kolganova, On possibility of plasmadynamic synthesis of ultradispersed crysstaline phases in supersonic plasma jet flowing into the air atmosphere, Russian Physics Journal, №12-3 (57) (2014) 324-328.
Google Scholar
[13]
S.V. Naumov, M.N. Ignatov, M.A. Sheksheev, Technology of mineral raw materials granulation by electric arc for manufacturing of welding fused flux. Solid State Phenomena, № 265 (2017) 290-295.
DOI: 10.4028/www.scientific.net/ssp.265.290
Google Scholar
[14]
R. Wang, W. Lu, Spheroidization of eutectic silicon in direct-electrolytic al-Si alloy, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, Vol. 44, Issue 6 (2013) 2799-2809.
DOI: 10.1007/s11661-012-1603-9
Google Scholar
[15]
S.V. Naumov, M.N. Ignatov, A.M. Ignatova, A.O. Artemov, Development of slag base for welding fluxes from man-made mineral formations of ural mining and smelting companies. Key Engineering Materials, № 743 (2017) 406-410.
DOI: 10.4028/www.scientific.net/kem.743.406
Google Scholar
[16]
A.O. Artemov, M.N. Ignatov, A.M. Ignatova, S.V. Naumov, Composition development and production technology of stone casting silicate materials and items. Key Engineering Materials, № 743 (2017) 401-405.
DOI: 10.4028/www.scientific.net/kem.743.401
Google Scholar
[17]
A.E. Marchenko, N.V. Skorina, Effect of technological factors of manufacture of low-hydrogen electrodes on hydrogen content in deposited metal, Avtomaticheskaya Svarka, № 8 (2013) 14-25.
Google Scholar
[18]
I.I. Liuborets, Welding fluxes, Technika, Kiev, (1984).
Google Scholar
[19]
V.V. Podgaevskii, V.G. Kuzmenko, Welding slag. Reference guide, Kiev, (1988).
Google Scholar
[20]
V.S. Bessmertnyi, A.A. Lyashko et al., Study of the properties of glasses after plasma treatment, International Journal of Applied and Fundamental Research, №12 (2010) 102-104.
Google Scholar
[21]
K. Terpilowski, D. Rymuszka, Surface properties of glass plates activated by air, oxygen, nitrogen and argon plasma, Glass Physics and Chemistry, №6 (42) (2016) 6 535-541.
DOI: 10.1134/s1087659616060195
Google Scholar
[22]
M.V. Grigoriev, S.N. Kulkov, Mechanical Properties Research of Corundum Ceramics at Change of Porosity and the Crystallites Sizes, Journal of Siberian Federal University. Engineering & Technologies, №1 (2011 4) 113-120.
Google Scholar
[23]
D. Goberman, Y.H. Sohn, L. Shaw et al., Microstructure development of Al2O3 -13 wt % TiO2 plasma sprayed coating derived from nanocristalline powders, Acta. Material, 50 (2002) 1141-1151.
DOI: 10.1016/s1359-6454(01)00414-1
Google Scholar