[1]
S. Gook, A. Gumenyuk, M. Rethmeier, Hybrid laser arc welding of X80 and X120 steel grade, Science and Technology of Welding and Joining, Volume 19, Issue 1, (2014) 15-24.
DOI: 10.1179/1362171813y.0000000154
Google Scholar
[2]
B. Acherjee, Hybrid laser arc welding: State-of-art review, Department of Production Engineering, Birla Institute of Technology, Optics and Laser Technology, (2018) 60–71.
DOI: 10.1016/j.optlastec.2017.09.038
Google Scholar
[3]
D-W. Cho, et al. Modeling and simulation of arc: Laser and hybrid welding process. J Manuf Process, 16(1) (2014) 26–55.
Google Scholar
[4]
R.J. Ong, J.T. Dawley and P.G. Clem: submitted to Journal of Materials Research (2003 Akselsen, O.M., Ren, X., Aas, S.K. Review of laser and hybrid laser-arc welding, Proceedings of the International Offshore and Polar Engineering Conference, (2014) 278-285.
Google Scholar
[5]
A. Gumenyuk, M. Rethmeier, Developments in hybrid laser-arc welding technology, Woodhead Publishing Limited, BAM Federal Institute for Materials Research and Testing, Germany (2013) 505-521.
DOI: 10.1533/9780857098771.3.505
Google Scholar
[6]
X.S. Gao, C.S. Wu, S.F. Goecke, H. Kuegler, Effects of process parameters on weld bead defects in oscillating laser-GMA hybrid welding of lap joints. International Journal of Advanced Manufacturing Technology, 93 (5-8), (2017) 1877-1892.
DOI: 10.1007/s00170-017-0637-y
Google Scholar
[7]
I. Bunaziv, J. Frostevarg, O.M. Akselsen, A.F. Kaplan, Hybrid Welding of 45 mm High Strength Steel Sections, Physics Procedia, 89 (2017) 11-22.
DOI: 10.1016/j.phpro.2017.08.006
Google Scholar
[8]
A.C. Astafyev, A.P. Gulyaev, On the growth of grain steel in the weld zone, Welding production, №7 (1972) 45-47.
Google Scholar
[9]
A.S Akritova, On the kinetics of the growth of austenite grains in the welded zone (HAZ) during welding, Bulletin of the Priazovsky State Technical University, 2 (1996) 153-156.
Google Scholar
[10]
A.S. Akritov, M.H. Shorshorov, On the rate of growth of austenite grains in welding, Welding production, 2 (1992) 29-31.
DOI: 10.1080/09507119309548430
Google Scholar
[11]
M.H. Shorshorov, V.V. Belov Phase Transformations and Changes in the Properties of Steel in Welding, Atlas, M.: Nauka, (1972) 220.
Google Scholar
[12]
S.F. Yuryev, On the role of specific volumes in the martensitic transformation of austenite, Moscow: Metallurgizdat, (1950) 288.
Google Scholar
[13]
Kou S. Welding metallurgy. New Jersey: John Wiley & Sons, (2003) 393.
Google Scholar
[14]
I.Y. Utkin, K.Y. Mentyukov, I.I. Frantov, A.N. Bortsov, Effect of Carbon and Niobium Content on the Kinetics of Decomposition of Supercooled Austenite in Rolled Metal and Near-Weld Zone of Pipe SteelsMetal Science and Heat Treatment, 59 (9-10) (2018) 545-550.
DOI: 10.1007/s11041-018-0187-4
Google Scholar
[15]
L.E. Lindgren, Numerical welding simulation, Calculation methods, Appl Mech Eng (2006).
Google Scholar
[16]
T.I. Makovetskii, I.L. Tabatchikova, N.A. Yakovleva , D.A. Mirzaev, Structure formation in low-alloy pipe steel during heating in the interctical temperature range, Phys. Met. Metallogr. 113 (2012) 704-715.
DOI: 10.1134/s0031918x12070083
Google Scholar
[17]
G.F. Sun, Z.D. Wang, Y. Lu, R. Zhou, Z.H. Ni, Investigation on microstructure and mechanical properties of NV E690 steel joint by laser-MIG hybrid welding, Materials and Design, (2017) 297-310.
DOI: 10.1016/j.matdes.2017.04.054
Google Scholar
[18]
L.A. Efimenko, O.E. Kapustin, A.A. Ramus, R.O. Ramus, Control of Softening Processes in the Heat-Affected Zone During Welding of High-Strength Steels, Metal Science and Heat Treatment, (2016) 1-7.
DOI: 10.1007/s11041-016-0031-7
Google Scholar
[19]
T. Garcin, M. Militzer, W.J. Poole, L. Collins, Microstructure model for the heat-affected zone of X80 linepipe steel, Materials Science and Technology (United Kingdom), 32 (7), (2016) 708-721.
DOI: 10.1080/02670836.2016.1142705
Google Scholar
[20]
L.A. Efimenko, O.E. Kapustin, A.O. Merkulova, R.A. Subbotin, O.S. Puyko, A.A. Shchekalova, Special features of transformation kinetics of austenite in heat treatment of stamped and welded components made of 10G2FBYu steel, Welding International, 30 (6) (2016) 472-478.
DOI: 10.1080/09507116.2015.1090176
Google Scholar
[21]
I. Bunaziv, O.M. Akselsen, J. Frostevarg, A.F.H. Kaplan, Deep penetration fiber laser-arc hybrid welding of thick HSLA steel, Journal of Materials Processing Technology, 256 (2018) 216-228.
DOI: 10.1016/j.jmatprotec.2018.02.026
Google Scholar
[22]
I. Bunaziv, O.M. Akselsen, J. Frostevarg, A.F.H. Kaplan, Hybrid Welding of 45 mm High Strength Steel Sections, Physics Procedia, 89 (2017) 11-22.
DOI: 10.1016/j.phpro.2017.08.006
Google Scholar
[23]
A.A. Velichko, V.V. Orlov, U.A. Pazilova, R.V. Sulyaguin, E.I. Khlusova, Optimization of the structure and properties of the heat-affected zone of welded joints in high-strength pipe steels, Welding International, 29 (9) (2015) 712-717.
DOI: 10.1080/09507116.2014.970330
Google Scholar
[24]
M.H. Shorshorov, Т.А. Chernyshova, A.I. Krasovskii, Tests of metals on weldability, Moscow: Metallurgy, (1972).
Google Scholar
[25]
L.A. Efimenko, Metallurgy and Heat Treatment of Welded Joints: Textbook, Moscow: Logos, (2007).
Google Scholar