The Energy Density as a Reliable Parameter for Characterization of Selective Laser Melting of Various Alloys

Article Preview

Abstract:

Various "energy density" parameters are used very often for comparison of fabrication modes for Selective Laser Melting (SLM) technology. Each SLM mode is determined by a number of process parameters. In this paper the energy density was considered critically as a reliable parameter for characterization of Selective Laser Melting of four various alloys on one SLM machine, on the example of fabrication of cubic specimen. The results obtained show that the energy density can be used for approximate comparison of SLM modes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

972-977

Citation:

Online since:

February 2019

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] U. Scipioni Bertoli, A.J. Wolfer, M.J. Matthews, J.-P.R. Delplanque, J.M. Schoenung, On the limitations of Volumetric Energy Density as a design parameter for Selective Laser Melting, Mater. Des. 113 (2017) 331–340.

DOI: 10.1016/j.matdes.2016.10.037

Google Scholar

[2] W.E. Frazier, Metal additive manufacturing: A review, J. Mater. Eng. Perform. 23 (2014) 1917–(1928).

Google Scholar

[3] B. Vayre, F. Vignat, F. Villeneuve, Metallic additive manufacturing: State-of-the-art review and prospects, Mech. Ind. 13 (2012) 89–96.

DOI: 10.1051/meca/2012003

Google Scholar

[4] P.K. Gokuldoss, S. Kolla, J. Eckert, Additive manufacturing processes: Selective laser melting, electron beam melting and binder jetting-selection guidelines, Materials (Basel). 10 (2017).

DOI: 10.3390/ma10060672

Google Scholar

[5] S. Hoeges, M. Lindner, W. Meiners, R. Smeets, Bioresorbable implants using selective laser melting, in: 21st Annu. Int. Solid Free. Fabr. Symp. - An Addit. Manuf. Conf. SFF 2010, 2010, 908–920.

Google Scholar

[6] P.A. Lykov, R.M. Baitimerov, A.V. Panfilov, A.. Guz, The manufacturing of TiAl6V4 implants using selective laser melting technology, IOP Conf. Ser. Mater. Sci. Eng. 248 (2017).

DOI: 10.1088/1757-899x/248/1/012004

Google Scholar

[7] H. Wang, B. Zhao, C. Liu, C. Wang, X. Tan, M. Hu, A comparison of biocompatibility of a titanium alloy fabricated by electron beam melting and selective laser melting, PLoS One. 11 (2016).

DOI: 10.1371/journal.pone.0158513

Google Scholar

[8] R. Wauthle, J. van der Stok, S. Amin Yavari, J. Van Humbeeck, J.-P. Kruth, A.A. Zadpoor, H. Weinans, M. Mulier, J. Schrooten, Additively manufactured porous tantalum implants, Acta Biomater. 14 (2015) 217–225.

DOI: 10.1016/j.actbio.2014.12.003

Google Scholar

[9] S.M. Wagner, R.O. Walton, Additive manufacturing's impact and future in the aviation industry, Prod. Plan. Control. 27 (2016) 1124–1130.

Google Scholar

[10] E. Uhlmann, R. Kersting, T.B. Klein, M.F. Cruz, A.V. Borille, Additive Manufacturing of Titanium Alloy for Aircraft Components, Procedia CIRP. 35 (2015) 55–60.

DOI: 10.1016/j.procir.2015.08.061

Google Scholar

[11] P. Lykov, R. Baytimerov, S. Vaulin, E. Safonov, D. Zherebtsov, Selective Laser Melting of Copper by 200 W CO2 Laser, SAE Tech. Pap. 2016–April (2016).

DOI: 10.4271/2016-01-0333

Google Scholar

[12] A. Popovich, V. Sufiiarov, I. Polozov, E. Borisov, D. Masaylo, A. Orlov, Microstructure and mechanical properties of additive manufactured copper alloy, Mater. Lett. 179 (2016) 38–41.

DOI: 10.1016/j.matlet.2016.05.064

Google Scholar

[13] T. Rong, D. Gu, Formation of novel graded interface and its function on mechanical properties of WC1-x reinforced Inconel 718 composites processed by selective laser melting, J. Alloys Compd. 680 (2016) 333–342.

DOI: 10.1016/j.jallcom.2016.04.107

Google Scholar

[14] H. Liu, H. Su, Z. Shen, E. Wang, D. Zhao, M. Guo, J. Zhang, L. Liu, H. Fu, Direct formation of Al2O3/GdAlO3/ZrO2 ternary eutectic ceramics by selective laser melting: Microstructure evolutions, J. Eur. Ceram. Soc. 38 (2018) 5144–5152.

DOI: 10.1016/j.jeurceramsoc.2018.07.040

Google Scholar

[15] K.G. Prashanth, S. Scudino, T. Maity, J. Das, J. Eckert, Is the energy density a reliable parameter for materials synthesis by selective laser melting?, Mater. Res. Lett. 5 (2017) 386–390.

DOI: 10.1080/21663831.2017.1299808

Google Scholar

[16] S. Pal, G. Lojen, V. Kokol, I. Drstvensek, Evolution of metallurgical properties of Ti-6Al-4V alloy fabricated in different energy densities in the Selective Laser Melting technique, J. Manuf. Process. 35 (2018) 538–546.

DOI: 10.1016/j.jmapro.2018.09.012

Google Scholar

[17] R.M. Baitimerov, P.A. Lykov, D.D. Gu, D.A. Zherebtsov, S.V. Nerush, Selective laser melting of nickel base heat resistance alloy EP648, Proc. 2nd Int. Conf. Prog. Addit. Manuf. (2016) 445–450.

DOI: 10.4028/www.scientific.net/msf.843.253

Google Scholar

[18] S.L. Campanelli, G. Casalino, N. Contuzzi, A. Angelastro, A.D. Ludovico, Analysis of the molten/solidified zone in selective laser melted parts, in: Proc. SPIE - Int. Soc. Opt. Eng., (2014).

DOI: 10.1117/12.2042170

Google Scholar

[19] F. Chang, D. Gu, Tailored growth of in situ Al4SiC4 in laser melted aluminum melt, Mod. Phys. Lett. B. 29 (2015).

Google Scholar

[20] P.A. Lykov, R.M. Baitimerov, S.D. Vaulin, Influence of SLM Process Parameters on Porosity of Nickel Base Heat Resistance Alloy EP648, Mater. Sci. Forum. 843 (2016) 253–258.

DOI: 10.4028/www.scientific.net/msf.843.253

Google Scholar

[21] R. Engeli, T. Etter, S. Hövel, K. Wegener, Processability of different IN738LC powder batches by selective laser melting, J. Mater. Process. Technol. 229 (2016) 484–491.

DOI: 10.1016/j.jmatprotec.2015.09.046

Google Scholar

[22] N.T. Aboulkhair, I. Maskery, I. Ashcroft, C. Tuck, N.M. Everitt, The role of powder properties on the processability of Aluminium alloys in selective laser melting, Lasers Manuf. Conf. (2015).

DOI: 10.1002/9781119093466.ch50

Google Scholar

[23] R. Baitimerov, P. Lykov, D. Zherebtsov, L. Radionova, A. Shultc, K.G. Prashanth, Influence of powder characteristics on processability of AlSi12 alloy fabricated by selective laser melting, Materials (Basel). 11 (2018).

DOI: 10.3390/ma11050742

Google Scholar

[24] P.A. Lykov, E.V. Safonov, A.M. Akhmedianov, Selective Laser Melting of Copper, Mater. Sci. Forum. 843 (2016) 284–288.

DOI: 10.4028/www.scientific.net/msf.843.284

Google Scholar

[25] R.M. Baitimerov, P.A. Lykov, L.V. Radionova, E.V. Safonov, Parameter optimization for selective laser melting of TiAl6V4 alloy by CO2 laser, IOP Conf. Ser. Mater. Sci. Eng. 248 (2017).

DOI: 10.1088/1757-899x/248/1/012012

Google Scholar

[26] A.B. Spierings, M. Schneider, R. Eggenberger, Comparison of density measurement techniques for additive manufactured metallic parts, Rapid Prototyp. J. 17 (2011) 380–386.

DOI: 10.1108/13552541111156504

Google Scholar

[27] I. Egry, E. Ricci, R. Novakovic, S. Ozawa, Surface tension of liquid metals and alloys-Recent developments, Adv. Colloid Interface Sci. 159 (2010) 198–212.

DOI: 10.1016/j.cis.2010.06.009

Google Scholar

[28] N.K. Tolochko, T. Laoui, Y. V Khlopkov, S.E. Mozzharov, V.I. Titov, M.B. Ignatiev, Absorptance of powder materials suitable for laser sintering, Rapid Prototyp. J. 6 (2000) 155–160.

DOI: 10.1108/13552540010337029

Google Scholar

[29] C.D. Boley, S.C. Mitchell, A.M. Rubenchik, S.S.Q. Wu, Metal powder absorptivity: Modeling and experiment, Appl. Opt. 55 (2016) 6496–6500.

DOI: 10.1364/ao.55.006496

Google Scholar