[1]
U. Scipioni Bertoli, A.J. Wolfer, M.J. Matthews, J.-P.R. Delplanque, J.M. Schoenung, On the limitations of Volumetric Energy Density as a design parameter for Selective Laser Melting, Mater. Des. 113 (2017) 331–340.
DOI: 10.1016/j.matdes.2016.10.037
Google Scholar
[2]
W.E. Frazier, Metal additive manufacturing: A review, J. Mater. Eng. Perform. 23 (2014) 1917–(1928).
Google Scholar
[3]
B. Vayre, F. Vignat, F. Villeneuve, Metallic additive manufacturing: State-of-the-art review and prospects, Mech. Ind. 13 (2012) 89–96.
DOI: 10.1051/meca/2012003
Google Scholar
[4]
P.K. Gokuldoss, S. Kolla, J. Eckert, Additive manufacturing processes: Selective laser melting, electron beam melting and binder jetting-selection guidelines, Materials (Basel). 10 (2017).
DOI: 10.3390/ma10060672
Google Scholar
[5]
S. Hoeges, M. Lindner, W. Meiners, R. Smeets, Bioresorbable implants using selective laser melting, in: 21st Annu. Int. Solid Free. Fabr. Symp. - An Addit. Manuf. Conf. SFF 2010, 2010, 908–920.
Google Scholar
[6]
P.A. Lykov, R.M. Baitimerov, A.V. Panfilov, A.. Guz, The manufacturing of TiAl6V4 implants using selective laser melting technology, IOP Conf. Ser. Mater. Sci. Eng. 248 (2017).
DOI: 10.1088/1757-899x/248/1/012004
Google Scholar
[7]
H. Wang, B. Zhao, C. Liu, C. Wang, X. Tan, M. Hu, A comparison of biocompatibility of a titanium alloy fabricated by electron beam melting and selective laser melting, PLoS One. 11 (2016).
DOI: 10.1371/journal.pone.0158513
Google Scholar
[8]
R. Wauthle, J. van der Stok, S. Amin Yavari, J. Van Humbeeck, J.-P. Kruth, A.A. Zadpoor, H. Weinans, M. Mulier, J. Schrooten, Additively manufactured porous tantalum implants, Acta Biomater. 14 (2015) 217–225.
DOI: 10.1016/j.actbio.2014.12.003
Google Scholar
[9]
S.M. Wagner, R.O. Walton, Additive manufacturing's impact and future in the aviation industry, Prod. Plan. Control. 27 (2016) 1124–1130.
Google Scholar
[10]
E. Uhlmann, R. Kersting, T.B. Klein, M.F. Cruz, A.V. Borille, Additive Manufacturing of Titanium Alloy for Aircraft Components, Procedia CIRP. 35 (2015) 55–60.
DOI: 10.1016/j.procir.2015.08.061
Google Scholar
[11]
P. Lykov, R. Baytimerov, S. Vaulin, E. Safonov, D. Zherebtsov, Selective Laser Melting of Copper by 200 W CO2 Laser, SAE Tech. Pap. 2016–April (2016).
DOI: 10.4271/2016-01-0333
Google Scholar
[12]
A. Popovich, V. Sufiiarov, I. Polozov, E. Borisov, D. Masaylo, A. Orlov, Microstructure and mechanical properties of additive manufactured copper alloy, Mater. Lett. 179 (2016) 38–41.
DOI: 10.1016/j.matlet.2016.05.064
Google Scholar
[13]
T. Rong, D. Gu, Formation of novel graded interface and its function on mechanical properties of WC1-x reinforced Inconel 718 composites processed by selective laser melting, J. Alloys Compd. 680 (2016) 333–342.
DOI: 10.1016/j.jallcom.2016.04.107
Google Scholar
[14]
H. Liu, H. Su, Z. Shen, E. Wang, D. Zhao, M. Guo, J. Zhang, L. Liu, H. Fu, Direct formation of Al2O3/GdAlO3/ZrO2 ternary eutectic ceramics by selective laser melting: Microstructure evolutions, J. Eur. Ceram. Soc. 38 (2018) 5144–5152.
DOI: 10.1016/j.jeurceramsoc.2018.07.040
Google Scholar
[15]
K.G. Prashanth, S. Scudino, T. Maity, J. Das, J. Eckert, Is the energy density a reliable parameter for materials synthesis by selective laser melting?, Mater. Res. Lett. 5 (2017) 386–390.
DOI: 10.1080/21663831.2017.1299808
Google Scholar
[16]
S. Pal, G. Lojen, V. Kokol, I. Drstvensek, Evolution of metallurgical properties of Ti-6Al-4V alloy fabricated in different energy densities in the Selective Laser Melting technique, J. Manuf. Process. 35 (2018) 538–546.
DOI: 10.1016/j.jmapro.2018.09.012
Google Scholar
[17]
R.M. Baitimerov, P.A. Lykov, D.D. Gu, D.A. Zherebtsov, S.V. Nerush, Selective laser melting of nickel base heat resistance alloy EP648, Proc. 2nd Int. Conf. Prog. Addit. Manuf. (2016) 445–450.
DOI: 10.4028/www.scientific.net/msf.843.253
Google Scholar
[18]
S.L. Campanelli, G. Casalino, N. Contuzzi, A. Angelastro, A.D. Ludovico, Analysis of the molten/solidified zone in selective laser melted parts, in: Proc. SPIE - Int. Soc. Opt. Eng., (2014).
DOI: 10.1117/12.2042170
Google Scholar
[19]
F. Chang, D. Gu, Tailored growth of in situ Al4SiC4 in laser melted aluminum melt, Mod. Phys. Lett. B. 29 (2015).
Google Scholar
[20]
P.A. Lykov, R.M. Baitimerov, S.D. Vaulin, Influence of SLM Process Parameters on Porosity of Nickel Base Heat Resistance Alloy EP648, Mater. Sci. Forum. 843 (2016) 253–258.
DOI: 10.4028/www.scientific.net/msf.843.253
Google Scholar
[21]
R. Engeli, T. Etter, S. Hövel, K. Wegener, Processability of different IN738LC powder batches by selective laser melting, J. Mater. Process. Technol. 229 (2016) 484–491.
DOI: 10.1016/j.jmatprotec.2015.09.046
Google Scholar
[22]
N.T. Aboulkhair, I. Maskery, I. Ashcroft, C. Tuck, N.M. Everitt, The role of powder properties on the processability of Aluminium alloys in selective laser melting, Lasers Manuf. Conf. (2015).
DOI: 10.1002/9781119093466.ch50
Google Scholar
[23]
R. Baitimerov, P. Lykov, D. Zherebtsov, L. Radionova, A. Shultc, K.G. Prashanth, Influence of powder characteristics on processability of AlSi12 alloy fabricated by selective laser melting, Materials (Basel). 11 (2018).
DOI: 10.3390/ma11050742
Google Scholar
[24]
P.A. Lykov, E.V. Safonov, A.M. Akhmedianov, Selective Laser Melting of Copper, Mater. Sci. Forum. 843 (2016) 284–288.
DOI: 10.4028/www.scientific.net/msf.843.284
Google Scholar
[25]
R.M. Baitimerov, P.A. Lykov, L.V. Radionova, E.V. Safonov, Parameter optimization for selective laser melting of TiAl6V4 alloy by CO2 laser, IOP Conf. Ser. Mater. Sci. Eng. 248 (2017).
DOI: 10.1088/1757-899x/248/1/012012
Google Scholar
[26]
A.B. Spierings, M. Schneider, R. Eggenberger, Comparison of density measurement techniques for additive manufactured metallic parts, Rapid Prototyp. J. 17 (2011) 380–386.
DOI: 10.1108/13552541111156504
Google Scholar
[27]
I. Egry, E. Ricci, R. Novakovic, S. Ozawa, Surface tension of liquid metals and alloys-Recent developments, Adv. Colloid Interface Sci. 159 (2010) 198–212.
DOI: 10.1016/j.cis.2010.06.009
Google Scholar
[28]
N.K. Tolochko, T. Laoui, Y. V Khlopkov, S.E. Mozzharov, V.I. Titov, M.B. Ignatiev, Absorptance of powder materials suitable for laser sintering, Rapid Prototyp. J. 6 (2000) 155–160.
DOI: 10.1108/13552540010337029
Google Scholar
[29]
C.D. Boley, S.C. Mitchell, A.M. Rubenchik, S.S.Q. Wu, Metal powder absorptivity: Modeling and experiment, Appl. Opt. 55 (2016) 6496–6500.
DOI: 10.1364/ao.55.006496
Google Scholar