Properties Anisotropy of Additive Manufactured High-Porous Titanium Alloy with Non-Equiaxial Cellular Structure

Article Preview

Abstract:

Numeric simulation of compression test was carried out for a high-porous structure of a titanium alloy produced by additive manufacturing method with non-equiaxial performance of pore cells. The stress-strain state of a cellular titanium alloy with diamond-shaped unit cells was determined by the finite element method (FEM) in ABAQUS software for the plane formulation of the problem. The distribution of stresses, as well as the modulus of elasticity of the cellular material, was proved to depend on the loading direction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

984-989

Citation:

Online since:

February 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Arias-González, J. D. Val, R. Comesaña, J. Penide, F. Lusquiños, F. Quintero, A. Riveiro, M. Boutinguiza, F. J. Gil, J. Pou. Microstructure and crystallographic texture of pure titanium parts generated by laser additive manufacturing, Metals and Materials International. 24 (1) (2018) 231-239.

DOI: 10.1007/s12540-017-7094-x

Google Scholar

[2] Y. Zhang, L. Wu, X. Guo, S. Kane, Y. Deng, Y. G. JungJe, H. Lee, J. Zhang. Additive Manufacturing of Metallic Materials, Journal of Materials Engineering and Performance. 27 (1), (2018) 1-13.

Google Scholar

[3] C. Han, Y. Li, Q. Wang, S. Wen, Q. Wei, C. Yan, L. Hao, J. Liu, Y. Shi. Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants, Journal of the Mechanical Behavior of Biomedical Materials. 80, (2018) 119-127.

DOI: 10.1016/j.jmbbm.2018.01.013

Google Scholar

[4] Yu.N. Loginov, A.I. Golodnov, S.I. Stepanov, E.Yu. Kovalev. Determining the Young's modulus of a cellular titanium implant by FEM simulation, AIP Conference Proceedings. 1915 (2017) 030010.

DOI: 10.1063/1.5017330

Google Scholar

[5] B. Piotrowski, A.A. Baptista, E. Patoor, P. Bravetti, A. Eberhardt, P. Laheurte. Interaction of bone-dental implant with new ultralow modulus alloy using a numerical approach, Materials Science and Engineering. C 38 (2014) 151-160.

DOI: 10.1016/j.msec.2014.01.048

Google Scholar

[6] K. Moiduddin, Microstructure and mechanical properties of porous titanium structures fabricated by electron beam melting for cranial implants, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. (2018) 185-199.

DOI: 10.1177/0954411917751558

Google Scholar

[7] W. Xue, B.V. Krishna, A. Bandyopadhyay, S. Bose. Processing and biocompatibility evaluation of laser processed porous titanium, Acta Biomaterialia. (2007) 1007-1018.

DOI: 10.1016/j.actbio.2007.05.009

Google Scholar

[8] Y. Loginov, S. Stepanov, C. Khanykova. Inhomogeneity of deformed state during compression testing of titanium implant, MATEC Web of Conferences. 132, (2017) 03009.

DOI: 10.1051/matecconf/201713203009

Google Scholar

[9] Y.N. Loginov, S.I. Stepanov, E.V. Khanykova. Effect of pore architecture of titanium implants on stress-strain state upon compression, Solid State Phenomena. 265 (2017) 606-610.

DOI: 10.4028/www.scientific.net/ssp.265.606

Google Scholar

[10] Y.N. Loginov, V.D. Solovei, V.V. Kotov. Transformation of the yielding condition during the deformation of hcp metallic materials. Russian Metallurgy (Metally). 3 (2010) 235-240.

DOI: 10.1134/s0036029510030146

Google Scholar

[11] Y.N. Loginov, M.P. Puzanov. Finite element modeling of the upsetting of an anisotropic cylindrical workpiece, AIP Conference Proceedings. 1915 (2017) 040033.

DOI: 10.1063/1.5017381

Google Scholar

[12] Mechanical testing of metals. Ductility testing. Compression test for porous and cellular metals ISO 13314:2011. International Organization for Standartization (2011).

DOI: 10.3403/30203544

Google Scholar

[13] S. Broxtermann, M. Taherishargh, I.V. Belova, G.E. Murch, T.Fiedler. On the compressive behaviour of high porosity expanded Perlite-Metal Syntactic Foam (P-MSF), Journal of Alloys and Compounds. 691 (2017) 690-697.

DOI: 10.1016/j.jallcom.2016.08.284

Google Scholar

[14] J. Liu, J. Yang. Investigation of Mesh Independency of Micro Polar Constitutive Model by Modelling Saturated Porous Media in Biaxial Tests, Poromechanics. 2017. - Proceedings of the 6th Biot Conference on Poromechanics. (2017) 1827-1835.

DOI: 10.1061/9780784480779.226

Google Scholar

[15] M. Nesládek, M. Španiel. An Abaqus plugin for fatigue predictions. Advances in Engineering Software. 103 (2017) 1-11.

DOI: 10.1016/j.advengsoft.2016.10.008

Google Scholar

[16] M. Würkner, S. Duczek, H. Berger, H. Köppe, U. Gabbert. A software platform for the analysis of porous die-cast parts using the finite cell method, Adv. Structured Materials. 81 (2018) 327-341.

DOI: 10.1007/978-981-10-6895-9_14

Google Scholar

[17] B.Y. Su, C.M. Huang, H. Sheng, W.Y. Jang. The effect of cell-size dispersity on the mechanical properties of closed-cell aluminum foam, Materials Characterization. 135 (2018) 203-213.

DOI: 10.1016/j.matchar.2017.11.035

Google Scholar

[18] F. Li, J. Li, H. Kou, L. Zhou. Porous Ti6Al4V alloys with enhanced normalized fatigue strength for biomedical applications, Materials Science and Engineering. C 60 (2016) 485-488.

DOI: 10.1016/j.msec.2015.11.074

Google Scholar

[19] C. Cosma, N. Balc, M. Moldovan, L. Morovic, P. Gogola, C. Miron-Borzan, Post-processing of customized implants made by laser beam melting from pure titanium, J. of Optoelectronics and Advanced Materials. 19 (2017) 738-747.

Google Scholar

[20] H. Shen, H. Li, L.C. Brinson. Effect of microstructural configurations on the mechanical responses of porous titanium: A numerical design of experiment analysis for orthopedic applications, Mechanics of Materials. 40 (9) (2008) 708-720.

DOI: 10.1016/j.mechmat.2008.03.009

Google Scholar

[21] W. Seo, D. Jeong, D. Lee, H. Sung, Y. Kwon, S. Kim, Effects of cooling rate and stabilization annealing on fatigue behavior of β-processed Ti-6Al-4V alloys, Metals and Materials International. 23 (2017) 648-659.

DOI: 10.1007/s12540-017-6730-9

Google Scholar

[22] A.A. Popov, A.G. Illarionov, S.I. Stepanov, O.A. Elkina, O.M. Ivasishin, Effect of quenching temperature on structure and properties of titanium alloy: Structure and phase composition, Physics of Metals and Metallography. 115 (2014) 507-516.

DOI: 10.1134/s0031918x14050068

Google Scholar