[1]
K. Kempen, L. Thijs, E. Yasa, M. Badrossamay, W. Verheecke, J.P. Kruth, Process Optimization and micostructural analysis for Selective Laser Melting of AlSi10Mg, Solid Free. Fabr. (2001) 484–495.
Google Scholar
[2]
H. Wang, B. Zhao, C. Liu, C. Wang, X. Tan, M. Hu, A comparison of biocompatibility of a titanium alloy fabricated by electron beam melting and selective laser melting, PLoS One. 11 (2016).
DOI: 10.1371/journal.pone.0158513
Google Scholar
[3]
R. Wauthle, J. van der Stok, S. Amin Yavari, J. Van Humbeeck, J.-P. Kruth, A.A. Zadpoor, H. Weinans, M. Mulier, J. Schrooten, Additively manufactured porous tantalum implants, Acta Biomater. 14 (2015) 217–225.
DOI: 10.1016/j.actbio.2014.12.003
Google Scholar
[4]
D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Laser additive manufacturing of metallic components: materials, processes and mechanisms, Int. Mater. Rev. 57 (2012) 133–164.
DOI: 10.1179/1743280411y.0000000014
Google Scholar
[5]
S.M. Wagner, R.O. Walton, Additive manufacturing's impact and future in the aviation industry, Prod. Plan. Control. 27 (2016) 1124–1130.
Google Scholar
[6]
E. Uhlmann, R. Kersting, T.B. Klein, M.F. Cruz, A.V. Borille, Additive Manufacturing of Titanium Alloy for Aircraft Components, Procedia CIRP. 35 (2015) 55–60.
DOI: 10.1016/j.procir.2015.08.061
Google Scholar
[7]
H.X. Li, B.Y. Huang, F. Sun, S.L. Gong, Microstructure and Tensile Properties of Ti-6Al-4V Alloys Fabricated by Selective Laser Melting, Rare Met. Mater. Eng. 42 (2013) 209–212.
Google Scholar
[8]
Y.J. Liu, S.J. Li, H.L. Wang, W.T. Hou, Y.L. Hao, R. Yang, T.B. Sercombe, L.C. Zhang, Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting, Acta Mater. 113 (2016) 56–67.
DOI: 10.1016/j.actamat.2016.04.029
Google Scholar
[9]
L. Hitzler, J. Hirsch, B. Heine, M. Merkel, W. Hall, A. Öchsner, On the anisotropic mechanical properties of selective laser-melted stainless steel, Materials (Basel). 10 (2017).
DOI: 10.20944/preprints201708.0067.v1
Google Scholar
[10]
M. Yakout, M.A. Elbestawi, S.C. Veldhuis, On the characterization of stainless steel 316L parts produced by selective laser melting, Int. J. Adv. Manuf. Technol. 95 (2018) 1953–(1974).
DOI: 10.1007/s00170-017-1303-0
Google Scholar
[11]
X. Zhang, R. Tiwari, A.H. Shooshtari, M.M. Ohadi, An additively manufactured metallic manifold-microchannel heat exchanger for high temperature applications, Appl. Therm. Eng. 143 (2018) 899–908.
DOI: 10.1016/j.applthermaleng.2018.08.032
Google Scholar
[12]
Z. Guoqing, Y. Yongqiang, L. Hui, S. Changhui, Z. Zimian, Study on the Quality and Performance of CoCrMo Alloy Parts Manufactured by Selective Laser Melting, J. Mater. Eng. Perform. 26 (2017) 2869–2877.
DOI: 10.1007/s11665-017-2716-5
Google Scholar
[13]
P.A. Lykov, A.O. Shults, K.A. Bromer, The Production and Subsequent Selective Laser Melting of AlSi12 Powder, Solid State Phenom. 265 (2017) 434–438.
DOI: 10.4028/www.scientific.net/ssp.265.434
Google Scholar
[14]
N.T. Aboulkhair, N.M. Everitt, I. Maskery, I. Ashcroft, C. Tuck, Selective laser melting of aluminum alloys, MRS Bull. 42 (2017) 311–319.
DOI: 10.1557/mrs.2017.63
Google Scholar
[15]
Z. Mao, D.Z. Zhang, P. Wei, K. Zhang, Manufacturing feasibility and forming properties of Cu-4Sn in selective laser melting, Materials (Basel). 10 (2017).
DOI: 10.3390/ma10040333
Google Scholar
[16]
P. Lykov, R. Baytimerov, S. Vaulin, E. Safonov, D. Zherebtsov, Selective Laser Melting of Copper by 200 W CO2 Laser, SAE Tech. Pap. 2016–April (2016).
DOI: 10.4271/2016-01-0333
Google Scholar
[17]
T. Rong, D. Gu, Formation of novel graded interface and its function on mechanical properties of WC1-x reinforced Inconel 718 composites processed by selective laser melting, J. Alloys Compd. 680 (2016) 333–342.
DOI: 10.1016/j.jallcom.2016.04.107
Google Scholar
[18]
P.A. Lykov, S.B. Sapozhnikov, R.M. Baitimerov, The manufacturing of the AlSi12-Al2O3 composite powder for additive production methods, Solid State Phenom. 870 (2016) 314–317.
DOI: 10.4028/www.scientific.net/msf.870.314
Google Scholar
[19]
X.-G. Li, L. Heisterüber, L. Achelis, U. Fritsching, Multiscale descriptions of particle-droplet interactions in multiphase spray processing, Int. J. Multiph. Flow. 80 (2016) 15–28.
DOI: 10.1016/j.ijmultiphaseflow.2015.10.013
Google Scholar
[20]
A. Davydova, A. Domashenkov, A. Sova, I. Movtchan, P. Bertrand, B. Desplanques, N. Peillon, S. Saunier, C. Desrayaud, S. Bucher, C. Iacob, Selective laser melting of boron carbide particles coated by a cobalt-based metal layer, J. Mater. Process. Technol. 229 (2016) 361–366.
DOI: 10.1016/j.jmatprotec.2015.09.033
Google Scholar
[21]
R. Baitimerov, P. Lykov, D. Zherebtsov, L. Radionova, A. Shultc, K.G. Prashanth, Influence of powder characteristics on processability of AlSi12 alloy fabricated by selective laser melting, Materials (Basel). 11 (2018).
DOI: 10.3390/ma11050742
Google Scholar
[22]
B. AlMangour, D. Grzesiak, J.-M. Yang, Selective laser melting of TiB2/H13 steel nanocomposites: Influence of hot isostatic pressing post-treatment, J. Mater. Process. Technol. 244 (2017) 344–353.
DOI: 10.1016/j.jmatprotec.2017.01.019
Google Scholar
[23]
L.Y. Jiang, T.T. Liu, C.D. Zhang, K. Zhang, M.C. Li, T. Ma, W.H. Liao, Preparation and mechanical properties of CNTs-AlSi10Mg composite fabricated via selective laser melting, Mater. Sci. Eng. A. 734 (2018) 171–177.
DOI: 10.1016/j.msea.2018.07.092
Google Scholar
[24]
P.A. Lykov, S.B. Sapozhnikov, I.S. Shulev, D.A. Zherebtsov, R.R. Abdrakhimov, Composite Micropowders for Selective Laser Sintering, Metallurgist. 59 (2016) 851–855.
DOI: 10.1007/s11015-016-0183-0
Google Scholar
[25]
W.W. Zhang, Y. Hu, Z. Wang, C. Yang, G.Q. Zhang, K.G. Prashanth, C. Suryanarayana, A novel high-strength Al-based nanocomposite reinforced with Ti-based metallic glass nanoparticles produced by powder metallurgy, Mater. Sci. Eng. A. 734 (2018) 34–41.
DOI: 10.1016/j.msea.2018.07.082
Google Scholar
[26]
D. Gu, Y. Shen, Effects of processing parameters on consolidation and microstructure of W-Cu components by DMLS, J. Alloys Compd. 473 (2009) 107–115.
DOI: 10.1016/j.jallcom.2008.05.065
Google Scholar
[27]
R.M. Baytimerov, P.A. Lykov, S.B. Sapozhnikov, D.A. Zherebtsov, K.A. Bromer, Method of Producing Composite Powder EP648-Al2O3 for Selective Laser Melting Usage, SAE Tech. Pap. (2016).
DOI: 10.4271/2016-01-2117
Google Scholar
[28]
R.M. Baitimerov, P.A. Lykov, D.D. Gu, D.A. Zherebtsov, S.V. Nerush, Selective laser melting of nickel base heat resistance alloy EP648, Proc. 2nd Int. Conf. Prog. Addit. Manuf. (2016) 445–450.
DOI: 10.4028/www.scientific.net/msf.843.253
Google Scholar
[29]
P.A. Lykov, R.M. Baitimerov, S.D. Vaulin, Influence of SLM Process Parameters on Porosity of Nickel Base Heat Resistance Alloy EP648, Mater. Sci. Forum. 843 (2016) 253–258.
DOI: 10.4028/www.scientific.net/msf.843.253
Google Scholar
[30]
T. Vilaro, C. Colin, J.D. Bartout, As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 42 (2011) 3190–3199.
DOI: 10.1007/s11661-011-0731-y
Google Scholar