Selective Laser Melting of Mixed EP648-Alumina Powder

Article Preview

Abstract:

Selective laser melting (SLM) technology makes it possible to produce complex shape metallic and metal-matrix composite (MMC) bulk parts from powder feedstock. This paper is devoted to selective laser melting of mechanically mixed metal (gas atomized EP648 alloy) and ceramic (alumina) powders. Four 10x10x5 mm specimen were successfully manufactured using different process parameters. Obtained MMC specimen were characterized by scanning electron microscopy. A possibility of manufacturing of dense EP648-alumina MMC by SLM using two-component mixed powder was shown

You might also be interested in these eBooks

Info:

Periodical:

Pages:

966-971

Citation:

Online since:

February 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Kempen, L. Thijs, E. Yasa, M. Badrossamay, W. Verheecke, J.P. Kruth, Process Optimization and micostructural analysis for Selective Laser Melting of AlSi10Mg, Solid Free. Fabr. (2001) 484–495.

Google Scholar

[2] H. Wang, B. Zhao, C. Liu, C. Wang, X. Tan, M. Hu, A comparison of biocompatibility of a titanium alloy fabricated by electron beam melting and selective laser melting, PLoS One. 11 (2016).

DOI: 10.1371/journal.pone.0158513

Google Scholar

[3] R. Wauthle, J. van der Stok, S. Amin Yavari, J. Van Humbeeck, J.-P. Kruth, A.A. Zadpoor, H. Weinans, M. Mulier, J. Schrooten, Additively manufactured porous tantalum implants, Acta Biomater. 14 (2015) 217–225.

DOI: 10.1016/j.actbio.2014.12.003

Google Scholar

[4] D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Laser additive manufacturing of metallic components: materials, processes and mechanisms, Int. Mater. Rev. 57 (2012) 133–164.

DOI: 10.1179/1743280411y.0000000014

Google Scholar

[5] S.M. Wagner, R.O. Walton, Additive manufacturing's impact and future in the aviation industry, Prod. Plan. Control. 27 (2016) 1124–1130.

Google Scholar

[6] E. Uhlmann, R. Kersting, T.B. Klein, M.F. Cruz, A.V. Borille, Additive Manufacturing of Titanium Alloy for Aircraft Components, Procedia CIRP. 35 (2015) 55–60.

DOI: 10.1016/j.procir.2015.08.061

Google Scholar

[7] H.X. Li, B.Y. Huang, F. Sun, S.L. Gong, Microstructure and Tensile Properties of Ti-6Al-4V Alloys Fabricated by Selective Laser Melting, Rare Met. Mater. Eng. 42 (2013) 209–212.

Google Scholar

[8] Y.J. Liu, S.J. Li, H.L. Wang, W.T. Hou, Y.L. Hao, R. Yang, T.B. Sercombe, L.C. Zhang, Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting, Acta Mater. 113 (2016) 56–67.

DOI: 10.1016/j.actamat.2016.04.029

Google Scholar

[9] L. Hitzler, J. Hirsch, B. Heine, M. Merkel, W. Hall, A. Öchsner, On the anisotropic mechanical properties of selective laser-melted stainless steel, Materials (Basel). 10 (2017).

DOI: 10.20944/preprints201708.0067.v1

Google Scholar

[10] M. Yakout, M.A. Elbestawi, S.C. Veldhuis, On the characterization of stainless steel 316L parts produced by selective laser melting, Int. J. Adv. Manuf. Technol. 95 (2018) 1953–(1974).

DOI: 10.1007/s00170-017-1303-0

Google Scholar

[11] X. Zhang, R. Tiwari, A.H. Shooshtari, M.M. Ohadi, An additively manufactured metallic manifold-microchannel heat exchanger for high temperature applications, Appl. Therm. Eng. 143 (2018) 899–908.

DOI: 10.1016/j.applthermaleng.2018.08.032

Google Scholar

[12] Z. Guoqing, Y. Yongqiang, L. Hui, S. Changhui, Z. Zimian, Study on the Quality and Performance of CoCrMo Alloy Parts Manufactured by Selective Laser Melting, J. Mater. Eng. Perform. 26 (2017) 2869–2877.

DOI: 10.1007/s11665-017-2716-5

Google Scholar

[13] P.A. Lykov, A.O. Shults, K.A. Bromer, The Production and Subsequent Selective Laser Melting of AlSi12 Powder, Solid State Phenom. 265 (2017) 434–438.

DOI: 10.4028/www.scientific.net/ssp.265.434

Google Scholar

[14] N.T. Aboulkhair, N.M. Everitt, I. Maskery, I. Ashcroft, C. Tuck, Selective laser melting of aluminum alloys, MRS Bull. 42 (2017) 311–319.

DOI: 10.1557/mrs.2017.63

Google Scholar

[15] Z. Mao, D.Z. Zhang, P. Wei, K. Zhang, Manufacturing feasibility and forming properties of Cu-4Sn in selective laser melting, Materials (Basel). 10 (2017).

DOI: 10.3390/ma10040333

Google Scholar

[16] P. Lykov, R. Baytimerov, S. Vaulin, E. Safonov, D. Zherebtsov, Selective Laser Melting of Copper by 200 W CO2 Laser, SAE Tech. Pap. 2016–April (2016).

DOI: 10.4271/2016-01-0333

Google Scholar

[17] T. Rong, D. Gu, Formation of novel graded interface and its function on mechanical properties of WC1-x reinforced Inconel 718 composites processed by selective laser melting, J. Alloys Compd. 680 (2016) 333–342.

DOI: 10.1016/j.jallcom.2016.04.107

Google Scholar

[18] P.A. Lykov, S.B. Sapozhnikov, R.M. Baitimerov, The manufacturing of the AlSi12-Al2O3 composite powder for additive production methods, Solid State Phenom. 870 (2016) 314–317.

DOI: 10.4028/www.scientific.net/msf.870.314

Google Scholar

[19] X.-G. Li, L. Heisterüber, L. Achelis, U. Fritsching, Multiscale descriptions of particle-droplet interactions in multiphase spray processing, Int. J. Multiph. Flow. 80 (2016) 15–28.

DOI: 10.1016/j.ijmultiphaseflow.2015.10.013

Google Scholar

[20] A. Davydova, A. Domashenkov, A. Sova, I. Movtchan, P. Bertrand, B. Desplanques, N. Peillon, S. Saunier, C. Desrayaud, S. Bucher, C. Iacob, Selective laser melting of boron carbide particles coated by a cobalt-based metal layer, J. Mater. Process. Technol. 229 (2016) 361–366.

DOI: 10.1016/j.jmatprotec.2015.09.033

Google Scholar

[21] R. Baitimerov, P. Lykov, D. Zherebtsov, L. Radionova, A. Shultc, K.G. Prashanth, Influence of powder characteristics on processability of AlSi12 alloy fabricated by selective laser melting, Materials (Basel). 11 (2018).

DOI: 10.3390/ma11050742

Google Scholar

[22] B. AlMangour, D. Grzesiak, J.-M. Yang, Selective laser melting of TiB2/H13 steel nanocomposites: Influence of hot isostatic pressing post-treatment, J. Mater. Process. Technol. 244 (2017) 344–353.

DOI: 10.1016/j.jmatprotec.2017.01.019

Google Scholar

[23] L.Y. Jiang, T.T. Liu, C.D. Zhang, K. Zhang, M.C. Li, T. Ma, W.H. Liao, Preparation and mechanical properties of CNTs-AlSi10Mg composite fabricated via selective laser melting, Mater. Sci. Eng. A. 734 (2018) 171–177.

DOI: 10.1016/j.msea.2018.07.092

Google Scholar

[24] P.A. Lykov, S.B. Sapozhnikov, I.S. Shulev, D.A. Zherebtsov, R.R. Abdrakhimov, Composite Micropowders for Selective Laser Sintering, Metallurgist. 59 (2016) 851–855.

DOI: 10.1007/s11015-016-0183-0

Google Scholar

[25] W.W. Zhang, Y. Hu, Z. Wang, C. Yang, G.Q. Zhang, K.G. Prashanth, C. Suryanarayana, A novel high-strength Al-based nanocomposite reinforced with Ti-based metallic glass nanoparticles produced by powder metallurgy, Mater. Sci. Eng. A. 734 (2018) 34–41.

DOI: 10.1016/j.msea.2018.07.082

Google Scholar

[26] D. Gu, Y. Shen, Effects of processing parameters on consolidation and microstructure of W-Cu components by DMLS, J. Alloys Compd. 473 (2009) 107–115.

DOI: 10.1016/j.jallcom.2008.05.065

Google Scholar

[27] R.M. Baytimerov, P.A. Lykov, S.B. Sapozhnikov, D.A. Zherebtsov, K.A. Bromer, Method of Producing Composite Powder EP648-Al2O3 for Selective Laser Melting Usage, SAE Tech. Pap. (2016).

DOI: 10.4271/2016-01-2117

Google Scholar

[28] R.M. Baitimerov, P.A. Lykov, D.D. Gu, D.A. Zherebtsov, S.V. Nerush, Selective laser melting of nickel base heat resistance alloy EP648, Proc. 2nd Int. Conf. Prog. Addit. Manuf. (2016) 445–450.

DOI: 10.4028/www.scientific.net/msf.843.253

Google Scholar

[29] P.A. Lykov, R.M. Baitimerov, S.D. Vaulin, Influence of SLM Process Parameters on Porosity of Nickel Base Heat Resistance Alloy EP648, Mater. Sci. Forum. 843 (2016) 253–258.

DOI: 10.4028/www.scientific.net/msf.843.253

Google Scholar

[30] T. Vilaro, C. Colin, J.D. Bartout, As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 42 (2011) 3190–3199.

DOI: 10.1007/s11661-011-0731-y

Google Scholar