Preparation, Characterization, and Encapsulation Efficiency Test of Simvastatin Microencapsulation Using Polyblend of Poly(Lactic Acid)and Poly(ɛ-Caprolactone)

Article Preview

Abstract:

Simvastatin is one of the most extensively used drugs to reduce blood cholesterol levels, which practically insoluble in water and not well absorbed from the gastrointestinal tract. In this study, simvastatin was encapsulated using polyblend of PLA and PCL in the composition of 60:40 by solvent evaporation technique (oil-in-water). The optimization of agitation rate, solvent removal time, emulsion time, and emulsifier concentration have been conducted to obtain the maximum efficiency to encapsulate simvastatin in the matrix polymer. The result showed that the optimum conditions to increase the encapsulation efficiency of simvastatin in the microcapsule using polyblend of PLA and PCL were obtained in the agitation rate, solvent removal time, emulsion time, and Tween 80 concentration as an emulsifier at 700 rpm, 1 hour, 1 hour, and 0.5% (v/v), respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-25

Citation:

Online since:

March 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Fattahi, J. Karimi-Sabet, A. Keshavarz, A. Golzaryc, M. Rafiee-Tehrani and M. A. Dorkoosh: J. Supercrit Fluids. Vol. 107 (2010), pp.469-478.

DOI: 10.1016/j.supflu.2015.05.013

Google Scholar

[2] M. Kushal, M. Monali, M. Durgavati, P. Mittal, S. Umesh and S. Pragna: Int.Res. J. Pharm.Vol. 4(2013), pp.70-76.

Google Scholar

[3] N. Shah, R. K. Mewada and T. Shah: International Conference on Current Trends in Technology (2011), pp.1-6.

Google Scholar

[4] M. F. Gonzales, R. A. Ruseckaite and T.R. Cuadrado: J. Appl. Polym. Sci. Vol. 71 (1999), pp.1223-1230.

Google Scholar

[5] G. Ruan and S-S. Feng: Biomaterials. Vol. 24 (2003), pp.5037-5044.

Google Scholar

[6] M. Li, O. Rouaud and D. Poncelet: Int. J. Pharm. Vol. 363 (2008), pp.26-39.

Google Scholar

[7] N. S. Berchane, F. F. Jebrail, K. H. Carson, A. C. Rice-Ficht and M. J. Andrews: J. Microencapsul. Vol. 23 (2006), pp.539-552.

Google Scholar

[8] A. J. Lasprilla, G. A. Martinez, B. H. Lunelli, A. L. Jardini and R. M. Filho: Biotechnol Adv. Vol 30 (2012), pp.321-328.

Google Scholar

[9] T. Kemala, E. Budianto and B. Soegiyono: Arab. J. Chem. Vol. 5 (2012), p.103–108.

Google Scholar

[10] D. Perumal: Int. J. Pharmaceut. Vol. 218 (2001), pp.1-11.

Google Scholar

[11] R. A. Jain. Biomaterials: Vol. 21 (2000), pp.2475-2490.

Google Scholar

[12] S. Freiberg and X. X. Zhu: Int. J. Pharmaceut. Vol. 282 (2004), pp.1-18.

Google Scholar

[13] S. Nikumhang and A. W. Basit: Int. J. Pharmaceut. Vol. 377 (2009), pp.135-141.

Google Scholar

[14] S. Tiwari and P. Verma: Int. J. Pharm. Life. Sci. Vol 2 (2011), pp.998-1005.

Google Scholar

[15] M. K. Lai and R. C. Tsiang: J. Microencapsul. Vol 21(2004), p.307.

Google Scholar

[16] N. Bolourtchian, K. Karimi, and R. Aboofazeli: J. Microencapsul. Vol 22 (2005), pp.529-538.

Google Scholar