Effect of Pre-Straining and Natural Aging on the Hardening Response during Artificial Aging of EN AW 6082 and Lead Free EN AW 6023 Aluminium Alloys

Article Preview

Abstract:

In order to study the pre-straining and natural aging effects on the age-hardening response of EN AW 6082 and EN AW 6023 aluminium alloys during artificial aging at 170°C, the pre-straining by 5% was performed immediately after solution treatment of alloys at 550°C and subsequent quenching. The age-hardening response during artificial aging applied after various natural aging time (from 0.1 to 5 000 hours) was investigated using Vickers microhardness measurements and transmission electron microscopy characterization. It was found that pre-straining of quenched alloys state caused a dislocation density increasing in solid solution, which resulted in an immediate microhardness increase of alloys. During the subsequent natural aging of EN AW 6082 alloy, its microhardness increased right after alloy quenching and pre-straining, but only to the values obtained for the unstrained alloy state. On the contrary, the hardness of pre-straining EN AW 6023 alloy that is alloyed by Sn did not increase either after 10 hours of natural aging. This phenomenon is attributed to the effect of Sn on suppression of the strengthening clusters formation. The hardness of alloys increased greatly during artificial aging after pre-straining and natural aging due to accelerating the formation of coherent β″-phase particles. The negative effect of natural aging on the maximum age-hardening response obtained during alloys artificial aging had been observed for most of the pre-strained and naturally aged alloys states, with exception of EN AW 6023 alloy states that were pre-strained and shortly naturally aged (up to 100 hours).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

82-91

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Polmear, Light Alloys: From Traditional Alloys to Nanocrystal, fourth ed., Butterworth-Heinemann, Oxford, (2006).

Google Scholar

[2] S. Sincar, U.S. Patent 6409966. (2002).

Google Scholar

[3] J. Faltus, K. Plaček, Patent CZ 286150 B6. (1999).

Google Scholar

[4] G. Timelli, B. Bonollo, Mater. Sci. Tech. 27 (2011) 291-299.

Google Scholar

[5] G. Edwards, K. Stiller, G. Dunlop, M. Couper, Acta Mater. 46 (1998) 3893-3904.

Google Scholar

[6] K. Matsuda, Y. Sakaguchi, Y. Miyata, Y. Uetani, T. Sato, A. Kamio, S. Ikeno, J. Mater. Sci. 35 (2000) 179-189.

DOI: 10.1023/a:1004769305736

Google Scholar

[7] C.D. Marioara, S.J. Aandersen, H.W. Zandberger, R. Halmestad, Metall. Mater. Trans. A 36 (2005) 691-702.

Google Scholar

[8] J. Røyset, T. Stene, J.A. Sæter, O. Reiso, Mater. Sci. Forum 519-521 (2006) 239-244.

DOI: 10.4028/www.scientific.net/msf.519-521.239

Google Scholar

[9] S. Esmaeili, X. Wang, D.J. Lloyd, W.J. Poole, Metall. Mater. Trans. A. 34A (2003) 751-763.

Google Scholar

[10] X. Wang, W.J. Poole, S. Esmaeili, D.J. Lloyd, J.D. Embury, Metall. Mater. Trans. A. 34A (2003) 2913-2923.

Google Scholar

[11] A. Serizawa, S. Hirosawa, T. Sato, Mater. Sci. Forum 519-521 (2006) 245-250.

Google Scholar

[12] S.N. Kim, J.H. Kim, H. Tezuka, E. Kobayashi, T. Sato, Mater. Trans. 54 (2013) 297- 303.

Google Scholar

[13] Y. Aruga, M. Kozuka, Y. Takaki, T. Sato, Mat. Sci. Eng. A, 631 (2015) 86-96.

Google Scholar

[14] Z. Jia, L. Ding, L. Cao, R. Sanders, S. Li, Q. Liu, Metall. Mater. Trans. A 48 (2017) 459-473.

Google Scholar

[15] H. Shishido, Y. Takaki, M. Kozuka, K. Matsumoto, Y. Aruga, Mater. Sci. Forum 877 (2017) 455-460.

Google Scholar

[16] M. Werinos, H. Antrekowitsch, T. Ebner, R. Prillhofer, W.A. Curtin, P.J. Uggowitzer, S. Pogatscher, Acta Mater. 118 (2016) 296-305.

DOI: 10.1016/j.actamat.2016.07.048

Google Scholar

[17] S. Pogatscher, H. Antrekowitsch, M. Werinos, F. Moszner, S.S.A. Gerstl, M.F. Francis, W.A. Curtin, J.F. Löffler, P.J. Uggowitzer, Phys. Rev. Lett. 112 (2014) 225701-1 – 225701-5.

DOI: 10.1103/physrevlett.112.225701

Google Scholar

[18] I. Stulíková, J. Faltus, B. Smola, Kovove Mater. 45 (2007) 85-90.

Google Scholar

[19] M. Fujda, M. Matvija, M. Glogovský, I. Orišenko, Manuf. Technol. 17 (2017) 706-710.

Google Scholar

[20] Y. Birol, Scripta Mater. 52 (2005) 169-173.

Google Scholar

[21] K. Teichmann, C.D. Marioara, S.J. Andersen, K. Martinsen, Metall. Mater. Trans. A 43 (2012) 4006-4014.

Google Scholar

[22] M. Kolar, K.O. Pedersen, S. Gulbrandsen-Dahl, K. Teichmann, K. Marthinsen, Materials Transactions 52 (2011) 1356-1362.

DOI: 10.2320/matertrans.l-mz201127

Google Scholar

[23] Y. Birol, J. Mater. Process. Tech. 173 (2006) 84-91.

Google Scholar

[24] E. Nes, Acta Mater. 43 (1995) 2189-2207.

Google Scholar

[25] O.G. Myhr, C. Schäfer, Ø. Grong, O. Engler, H.J. Brinkman, J. Hirsch, Mater. Sci. Forum 794-796 (2014) 670-675.

Google Scholar

[26] M. Kolar, K.O. Pedersen, S. Gulbrandsen-Dahl, T. Brüggemann, K. Marthinsen, Mater. Sci. Forum 638-642 (2010) 261-266.

DOI: 10.4028/www.scientific.net/msf.638-642.261

Google Scholar