Effect of Natural Aging on Mechanical Response of the Artificially Aged EN AW 6063 Aluminium Alloy

Article Preview

Abstract:

The effect of natural pre-aging time (from 0.1 to 10000 h) on mechanical response during subsequent artificial aging of EN AW 6063 aluminium alloy at 170°C was investigated using Vickers microhardness measurements, tensile test analysis and transmission electron microscopy characterization. The microhardness and tensile strength of EN AW 6063 alloy increased slightly with natural aging time. Afterward, the artificial ageing from 18 to 20 hours induced the maximum increasing of hardness and strength for variously naturally pre-aged states of alloy. But, it was found that when pre-aging time was prolonged from 0.1 h to 10000 h, the mechanical response of artificial aging applied for the pre-aged alloy states was slightly improved. It was suggested, that as pre-aging time was increased, the size of β'-phase particles formed in solid solution of pre-aged alloy state during artificial aging was decreased and their amount was increased.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

74-81

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Polmear, Light Alloys: From Traditional Alloys to Nanocrystal, fourth ed., Butterworth-Heinemann, Oxford, (2006).

Google Scholar

[2] C.D. Marioara, S.J. Andersen, J. Jansen, H.W. Zandbergen, Acta Mater. 51 (2003) 789-796.

Google Scholar

[3] A. Cuniberti, A. Tolley, M.V.C. Riglos, R. Giovachini, Mater. Sci. Eng. A 527 (2010) 5307-5311.

Google Scholar

[4] Jia, L. Ding, L. Cao, R. Sanders, S. Li, Q. Liu, Metall. Mater. Trans. A 48 (2017) 459-473.

Google Scholar

[5] J. Røyset, T. Stene, J.A. Sæter, O. Reiso, Mater. Sci. Forum 519-521 (2006) 239-244.

DOI: 10.4028/www.scientific.net/msf.519-521.239

Google Scholar

[6] F.A. Martinsen, F.J.H. Ehlers, M.Torsæter, R. Holmestad, Acta Mater. 60 (2012) 6091-6101.

DOI: 10.1016/j.actamat.2012.07.047

Google Scholar

[7] A. Poznak, V. Thole, P. Sanders, Metals-Basel 8 (2018) 309.

Google Scholar

[8] R.C. Dorward, Metall. Trans. 4 (1973) 507-512.

Google Scholar

[9] A. Vazdirvanidis, G. Pantazopoulos, A. Toulfatzis, A. Rikos, D. Manolakos, Mater. Sci. Forum 877 (2017) 315-321.

DOI: 10.4028/www.scientific.net/msf.877.315

Google Scholar

[10] C.S.T. Chang, I. Wieler, N. Wanderka and J. Banhart, Ultramicroscopy 109 (2009) 585-592.

Google Scholar

[11] M. Torsæter, W. Lefebvre, S.J. Andersen, C.D. Marioara, J.C. Walmsley, R. Holmestad, Proceedings of the 12th International Conference on Aluminium Alloys, Yokohama, Japan, September 5 – 9, (2010) 1385-1390.

Google Scholar

[12] S.N. Kim, J.H. Kim, H. Tezuka, E. Kobayashi, T. Sato, Mater. Trans. 54 (2013) 297- 303.

Google Scholar

[13] Y. Aruga, M. Kozuka, Y. Takaki, T. Sato, Mat. Sci. Eng. A, 631 (2015) 86-96.

Google Scholar

[14] A. Serizawa, S. Hirosawa, T. Sato, Mater. Sci. Forum 519-521 (2006) 245-250.

Google Scholar

[15] Y. Takaki, Y. Aruga, M. Kozuka, T. Sato, Mater. Sci. Forum 794-796 (2014) 1026-1031.

Google Scholar

[16] Y. Birol, J. Mater. Process. Tech. 173 (2006) 84-91.

Google Scholar

[17] J. Banhart, C.S.T. Chang, Z. Liang, N. Wanderka, M.D.H. Lay, A.J. Hill, Adv. Eng. Mater. 12 (2010) 559-571.

DOI: 10.1002/adem.201000041

Google Scholar

[18] J.M. Robinson, Int. Mater. Rev. 39 (1994) 217-227.

Google Scholar

[19] M. Fujda, M. Matvija, M. Glogovský, I. Orišenko, Manuf. Technol. 17 (2017) 706-710.

Google Scholar

[20] C.S. Tsao, C.Y. Chen, U.S. Jeng, T.Y. Kuo, Acta Mater. 54 (2006) 4621-4632.

Google Scholar