[1]
K. Essa and P. Hartley, Numerical simulation of single and dual pass conventional spinning processes, Int. J. Mat. Form. 2 (2009) 271-281.
DOI: 10.1007/s12289-009-0602-x
Google Scholar
[2]
M. Abd-Alrazzaq, M. Ahmed, M. Younes, Experimental Investigation on the Geometrical Accuracy of the CNC Multi-Pass Sheet Metal Spinning Process, J. Man. Mat. Proc. 2(2018) 59-80.
DOI: 10.3390/jmmp2030059
Google Scholar
[3]
K. Essa and P. Hartley, Optimization of conventional spinning process parameters by means of numerical simulation and statistical analysis, J. Eng. Manuf. 224 (2010) 1691-1705.
DOI: 10.1243/09544054jem1786
Google Scholar
[4]
L. Wang and H. Long, A study of effects of roller path profiles on tool forces and part wall thickness variation in conventional metal spinning, J. Mat. Proc. Tech. 211 (2011) 2140-2151.
DOI: 10.1016/j.jmatprotec.2011.07.013
Google Scholar
[5]
C.C Wong, T.A. Dean, J. Lin, A review of spinning, shear forming and flow forming processes, Int. J. Mach. Tools Manuf. 43 (2003) 1419-1435.
DOI: 10.1016/s0890-6955(03)00172-x
Google Scholar
[6]
J.A. Polyblank and J.M. Allwood, Parametric toolpath design in metal spinning, CIRP An. Manuf. Tech. 64 (2015) 301-304.
DOI: 10.1016/j.cirp.2015.04.077
Google Scholar
[7]
M. Zhan et al., Review on hot spinning for difficult-to-deform lightweight metals, Trans. Nonferr. Met. Soc. China. 25 (2015) 1732-1743.
DOI: 10.1016/s1003-6326(15)63778-5
Google Scholar
[8]
C. Brummer at al., Laser-assisted metal spinning for an efficient and flexible processing of challenging materials, Mat. Sci. Eng. 119 (2016) 12-22.
Google Scholar
[9]
B.P. Bewlay and D.U. Furrer, Spinning, In: S.L. Semiatin (Eds), ASM Handbook: Metalworking- Sheet Forming, ASM International, Ohio, 2006, pp.367-374.
DOI: 10.31399/asm.hb.v14b.a0005123
Google Scholar
[10]
P. Groche and R. Schäfer, Analysis of the geometrical tolerances and surface roughness of the spinning process, in: Frank Vollertsen (Eds.), Process Scaling, BIAS-Verlag, Bremen, 2003, pp.78-81.
Google Scholar
[11]
J. Petrovič, Vplyv vybraných technologických parametrov konvenčného tlačenia na rozmerovú a tvarovú presnosť výtvarkov z koróziivzdorných ocelí, [Dissertation thesis]- Supervisor: prof. Ing. Peter Šugár, CSc. – Trnava: STU MTF, (2015).
Google Scholar
[12]
Ch.-H. Liu, The simulation of the multi-pass and die-less spinning process, J. Mater. Proc. Technol. 192–193 (2007) 518-524.
DOI: 10.1016/j.jmatprotec.2007.04.021
Google Scholar
[13]
I.S. Marghmaleki et al., Finite Element Simulation of Thermomechanical Spinning Process, Proc. Eng. 10 (2011) 3769-3774.
DOI: 10.1016/j.proeng.2011.04.616
Google Scholar
[14]
M.-D. Chen, R.-Q. Hsu, K.-H. Fuh, Effects of over-roll thickness on cone surface roughness in shear spinning, J. Mater. Process. Technol. 159 (2005) 1-8.
DOI: 10.1016/j.jmatprotec.2003.07.017
Google Scholar
[15]
M.M. EL-Khabeery et al., On the Conventional Simple Spinning of Cylindrical Aluminium Cups, Int. J. Mach. Tools Manuf. 31 (1991) 203-219.
DOI: 10.1016/0890-6955(91)90005-n
Google Scholar
[16]
A. R. Fazeli and M. Ghoreishi, Investigation of effective parameters on surface roughness in thermomechanical tube spinning process, Int. J. Mater. Form. 2 (2009) 261-270.
DOI: 10.1007/s12289-009-0420-1
Google Scholar
[17]
G. Venkateshwarlu et al., Experimental Investigation on Spinning of Aluminum Alloy 19500 Cup, Int. J. Eng. Sci. Innov. Technol. 2 (2013) 357-363.
Google Scholar
[18]
M. Kleiner et al., Optimisation of the Shear Forming Process by Means of Multivariate Statistical Methods, 2005. Available online: https://www.researchgate.net/publication/45130768_Optimisati on_of_the_shear_forming_ process_by_means_of_multivariate_statistical_methods.
Google Scholar
[19]
J. Audy, Spinning Force Characteristics in Forming Steel Blanks, Trans. Inov. 10 (2007) 230-234.
Google Scholar
[20]
K. Udayani et al., Optimization of Process Parameters of Metal Spinning using Response Surface Methodology, Int. J. Emerg. Technol. Eng. Res. 5 (2017) 253-256.
Google Scholar
[21]
M. Hayama, Effect of Roller Pass Programming on Products in Conventional Spinning, Rot. Form. Int. Acad. Publ. 1 (1989) 171-176.
Google Scholar
[22]
J. Hudák and M. Tomáš, Normálová anizotropia a cípovitosť výťažkov ocelí pre automobilový priemysel, Trans. Inov. 16 (2010) 161-164.
Google Scholar
[23]
G.E. Dieter, Mechanical Metallurgy, USA: Mc-Graw Hill, 1976. 774p.
Google Scholar
[24]
D. Altenpohl, Aluminum viewed from within: An introduction into the metallurgy of aluminum fabrication, Dusseldorf: Aluminium Verlag, 1982. 223p.
Google Scholar
[25]
J. Majerníková and E. Spišák, Analýza lisovateľnosti poklopovo žíhaných plechov, Trans. Inov. 11 (2008) 202-207.
Google Scholar
[26]
R.A. Higgins, Engineering metallurgy- Part II: Metallurgical process technology, Hong Kong: Hodder Arnold, 1974. 416p.
Google Scholar
[27]
J. Majerníková and E. Spišák, Vplyv tepelného spracovania zinkovej vrstvy na tvorbu cípov AHSS ocelí, Trans. Inov. 28 (2013) 73-77.
Google Scholar
[28]
R.W.K. Honeycombe, Plastic deformation of metals, London: Hodder, 1968. 350p.
Google Scholar
[29]
K. Delikanli, The effects of annealing parameters on earing for aluminum alloy, J. Yekarum, 2-3 (2014) 15-19.
Google Scholar
[30]
K. Kawai, L.-N. Yang, H. Kudo, A flexible shear spinning of axi-symmetrical shells with a general-purpose mandrel, J. Mater. Process. Technol. 192–193 (2007) 13-17.
DOI: 10.1016/j.jmatprotec.2007.04.008
Google Scholar
[31]
Information on: http://www3.ikaros.net/datablad/pblad/smorjmedel%20(Univar)/600631321_Ren ep_CGLP_PBLAD.pdf.
Google Scholar
[32]
M. Frnčík et al., The effect of conventional metal spinning parameters on the spun-part wall thickness variation: submitted to IOP Conference Series – Materials Science and Engineering (2018).
DOI: 10.1088/1757-899x/448/1/012017
Google Scholar
[33]
P. Šugár, J. Šugárová, J. Petrovič, Analysis of the effect of process parameters on part wall thickness variation in conventional metal spinning of Cr-Mn austenitic stainless steels, Stroj. Vestnik.- J Mech. Eng. 62 (2016) 171-178.
DOI: 10.5545/sv-jme.2015.2901
Google Scholar
[34]
M. Murata and N. Ohara, Truncated Cone Spinning of Sheet Metal, Proc. 9th Int. Conf. Sheet Metal. (2001), Leuven, Belgium, 199-204.
Google Scholar
[35]
P. Šugár, J. Šugárová, J. Petrovič, The Effect of Process Parameters on Surface Finish of Metal Spun Parts, Tech. Gaz. 25 (2018) 1467-1471.
DOI: 10.4028/www.scientific.net/kem.581.391
Google Scholar