Study on Wall Heights and Surface Roughness of Spun Cups Produced of Metal Blanks by Multipass CNC Spinning Technology

Article Preview

Abstract:

This research paper deals with the influence analysis of the conventional metal spinning parameters (tool path profile tpp, tool feed f and mandrel rotational speed n) on the wall heights and the surface roughness Ra of the cylindrical-shaped spun parts measured in various directions with respect to the material rolling direction. Experimental research was carried out according to the 3-level full factorial design of experiment (DoE). Experimental study was also statistically analyzed by the ANOVA method. It was observed that tool path profile is a process parameter which has the most significant impact on the spun cup height and the surface finish, as well.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-65

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Essa and P. Hartley, Numerical simulation of single and dual pass conventional spinning processes, Int. J. Mat. Form. 2 (2009) 271-281.

DOI: 10.1007/s12289-009-0602-x

Google Scholar

[2] M. Abd-Alrazzaq, M. Ahmed, M. Younes, Experimental Investigation on the Geometrical Accuracy of the CNC Multi-Pass Sheet Metal Spinning Process, J. Man. Mat. Proc. 2(2018) 59-80.

DOI: 10.3390/jmmp2030059

Google Scholar

[3] K. Essa and P. Hartley, Optimization of conventional spinning process parameters by means of numerical simulation and statistical analysis, J. Eng. Manuf. 224 (2010) 1691-1705.

DOI: 10.1243/09544054jem1786

Google Scholar

[4] L. Wang and H. Long, A study of effects of roller path profiles on tool forces and part wall thickness variation in conventional metal spinning, J. Mat. Proc. Tech. 211 (2011) 2140-2151.

DOI: 10.1016/j.jmatprotec.2011.07.013

Google Scholar

[5] C.C Wong, T.A. Dean, J. Lin, A review of spinning, shear forming and flow forming processes, Int. J. Mach. Tools Manuf. 43 (2003) 1419-1435.

DOI: 10.1016/s0890-6955(03)00172-x

Google Scholar

[6] J.A. Polyblank and J.M. Allwood, Parametric toolpath design in metal spinning, CIRP An. Manuf. Tech. 64 (2015) 301-304.

DOI: 10.1016/j.cirp.2015.04.077

Google Scholar

[7] M. Zhan et al., Review on hot spinning for difficult-to-deform lightweight metals, Trans. Nonferr. Met. Soc. China. 25 (2015) 1732-1743.

DOI: 10.1016/s1003-6326(15)63778-5

Google Scholar

[8] C. Brummer at al., Laser-assisted metal spinning for an efficient and flexible processing of challenging materials, Mat. Sci. Eng. 119 (2016) 12-22.

Google Scholar

[9] B.P. Bewlay and D.U. Furrer, Spinning, In: S.L. Semiatin (Eds), ASM Handbook: Metalworking- Sheet Forming, ASM International, Ohio, 2006, pp.367-374.

DOI: 10.31399/asm.hb.v14b.a0005123

Google Scholar

[10] P. Groche and R. Schäfer, Analysis of the geometrical tolerances and surface roughness of the spinning process, in: Frank Vollertsen (Eds.), Process Scaling, BIAS-Verlag, Bremen, 2003, pp.78-81.

Google Scholar

[11] J. Petrovič, Vplyv vybraných technologických parametrov konvenčného tlačenia na rozmerovú a tvarovú presnosť výtvarkov z koróziivzdorných ocelí, [Dissertation thesis]- Supervisor: prof. Ing. Peter Šugár, CSc. – Trnava: STU MTF, (2015).

Google Scholar

[12] Ch.-H. Liu, The simulation of the multi-pass and die-less spinning process, J. Mater. Proc. Technol. 192–193 (2007) 518-524.

DOI: 10.1016/j.jmatprotec.2007.04.021

Google Scholar

[13] I.S. Marghmaleki et al., Finite Element Simulation of Thermomechanical Spinning Process, Proc. Eng. 10 (2011) 3769-3774.

DOI: 10.1016/j.proeng.2011.04.616

Google Scholar

[14] M.-D. Chen, R.-Q. Hsu, K.-H. Fuh, Effects of over-roll thickness on cone surface roughness in shear spinning, J. Mater. Process. Technol. 159 (2005) 1-8.

DOI: 10.1016/j.jmatprotec.2003.07.017

Google Scholar

[15] M.M. EL-Khabeery et al., On the Conventional Simple Spinning of Cylindrical Aluminium Cups, Int. J. Mach. Tools Manuf. 31 (1991) 203-219.

DOI: 10.1016/0890-6955(91)90005-n

Google Scholar

[16] A. R. Fazeli and M. Ghoreishi, Investigation of effective parameters on surface roughness in thermomechanical tube spinning process, Int. J. Mater. Form. 2 (2009) 261-270.

DOI: 10.1007/s12289-009-0420-1

Google Scholar

[17] G. Venkateshwarlu et al., Experimental Investigation on Spinning of Aluminum Alloy 19500 Cup, Int. J. Eng. Sci. Innov. Technol. 2 (2013) 357-363.

Google Scholar

[18] M. Kleiner et al., Optimisation of the Shear Forming Process by Means of Multivariate Statistical Methods, 2005. Available online: https://www.researchgate.net/publication/45130768_Optimisati on_of_the_shear_forming_ process_by_means_of_multivariate_statistical_methods.

Google Scholar

[19] J. Audy, Spinning Force Characteristics in Forming Steel Blanks, Trans. Inov. 10 (2007) 230-234.

Google Scholar

[20] K. Udayani et al., Optimization of Process Parameters of Metal Spinning using Response Surface Methodology, Int. J. Emerg. Technol. Eng. Res. 5 (2017) 253-256.

Google Scholar

[21] M. Hayama, Effect of Roller Pass Programming on Products in Conventional Spinning, Rot. Form. Int. Acad. Publ. 1 (1989) 171-176.

Google Scholar

[22] J. Hudák and M. Tomáš, Normálová anizotropia a cípovitosť výťažkov ocelí pre automobilový priemysel, Trans. Inov. 16 (2010) 161-164.

Google Scholar

[23] G.E. Dieter, Mechanical Metallurgy, USA: Mc-Graw Hill, 1976. 774p.

Google Scholar

[24] D. Altenpohl, Aluminum viewed from within: An introduction into the metallurgy of aluminum fabrication, Dusseldorf: Aluminium Verlag, 1982. 223p.

Google Scholar

[25] J. Majerníková and E. Spišák, Analýza lisovateľnosti poklopovo žíhaných plechov, Trans. Inov. 11 (2008) 202-207.

Google Scholar

[26] R.A. Higgins, Engineering metallurgy- Part II: Metallurgical process technology, Hong Kong: Hodder Arnold, 1974. 416p.

Google Scholar

[27] J. Majerníková and E. Spišák, Vplyv tepelného spracovania zinkovej vrstvy na tvorbu cípov AHSS ocelí, Trans. Inov. 28 (2013) 73-77.

Google Scholar

[28] R.W.K. Honeycombe, Plastic deformation of metals, London: Hodder, 1968. 350p.

Google Scholar

[29] K. Delikanli, The effects of annealing parameters on earing for aluminum alloy, J. Yekarum, 2-3 (2014) 15-19.

Google Scholar

[30] K. Kawai, L.-N. Yang, H. Kudo, A flexible shear spinning of axi-symmetrical shells with a general-purpose mandrel, J. Mater. Process. Technol. 192–193 (2007) 13-17.

DOI: 10.1016/j.jmatprotec.2007.04.008

Google Scholar

[31] Information on: http://www3.ikaros.net/datablad/pblad/smorjmedel%20(Univar)/600631321_Ren ep_CGLP_PBLAD.pdf.

Google Scholar

[32] M. Frnčík et al., The effect of conventional metal spinning parameters on the spun-part wall thickness variation: submitted to IOP Conference Series – Materials Science and Engineering (2018).

DOI: 10.1088/1757-899x/448/1/012017

Google Scholar

[33] P. Šugár, J. Šugárová, J. Petrovič, Analysis of the effect of process parameters on part wall thickness variation in conventional metal spinning of Cr-Mn austenitic stainless steels, Stroj. Vestnik.- J Mech. Eng. 62 (2016) 171-178.

DOI: 10.5545/sv-jme.2015.2901

Google Scholar

[34] M. Murata and N. Ohara, Truncated Cone Spinning of Sheet Metal, Proc. 9th Int. Conf. Sheet Metal. (2001), Leuven, Belgium, 199-204.

Google Scholar

[35] P. Šugár, J. Šugárová, J. Petrovič, The Effect of Process Parameters on Surface Finish of Metal Spun Parts, Tech. Gaz. 25 (2018) 1467-1471.

DOI: 10.4028/www.scientific.net/kem.581.391

Google Scholar