[1]
K. Miłkowska-Piszczek, M. Korolczuk-Hejnak, An Analysis of The Influence of Viscosity on The Numerical Simulation Of Temperature Distribution As Demonstrated By The CC Process, Arch. Metall. Mater. 58 (2013) 1267-1274.
DOI: 10.2478/amm-2013-0146
Google Scholar
[2]
K. Sołek, M. Korolczuk-Hejnak, W. Ślęzak, Viscosity measurements for modeling of continuous steel, Arch. Metall. Mater. 57 (2012) 333-338.
DOI: 10.2478/v10172-012-0031-6
Google Scholar
[3]
H.V. Atkinson, Modelling the Semi-solid Proceesing of Metallic Alloys, Prog. Mater Sci. 50 (2005) 341-412.
Google Scholar
[4]
Ł. Rogal, J. Dutkiewicz, H.V. Atkinson, L. Lityńska-Dobrzyńska, T. Czeppe, M. Modigell, Characterization of semi-solid processing of aluminium alloy 7075 with Sc and Zr additions, Mat. Sci. Eng. A-Struct. 580 (2013) 362-373.
DOI: 10.1016/j.msea.2013.04.078
Google Scholar
[5]
D. Brabazon, D.J. Browne, A.J. Carr, Experimental investigation of the transient and steady state rheological behaviour of Al/Si alloys in the mushy state, Mat. Sci. Eng. A-Struct. 356 (2003) 69-80.
DOI: 10.1016/s0921-5093(03)00158-8
Google Scholar
[6]
A. Blanco, Z. Azpilgain, J. Lozares, P. Kapranos, I. Hurtado, Rheological characterization of A201 aluminum alloy, Trans. Nonferrous Met. Soc. China 20 (2010) 1638-1642.
DOI: 10.1016/s1003-6326(09)60351-4
Google Scholar
[7]
P. Das, S. K. Samanta, P. Dutta, Rheological Behavior of Al-7Si-0.3Mg Alloy at Mushy State, Metall. Mater. Trans. B 46 (2015) 1302-1313.
DOI: 10.1007/s11663-015-0290-5
Google Scholar
[8]
O. Lashkari, F. Ajersch, A. Charette, X. Chen, Microstructure and rheological behavior of hypereutectic semi-solid Al–Si alloy under low shear rates compression test, Mat. Sci. Eng. A-Struct. 492 (2008) 377-382.
DOI: 10.1016/j.msea.2008.05.018
Google Scholar
[9]
A. Deshpande, J. Krishnan, P.S. Kumar (Eds.), Rheology of complex fluids, Springer, New York, (2010).
Google Scholar
[10]
Z. Kembłowski, Reometria płynów nienewtonowskich, Wydawnictwo Naukowo-Techniczne, Warszawa, (1973).
Google Scholar
[11]
T. Mezger T., The rheology handbook. For users of rotational and oscillatory rheometers. 2nd revision, Vincentz Network GmbH&Co, Hannover, (2006).
DOI: 10.1515/9783748603702
Google Scholar
[12]
R. Wiśniowski, K. Skrzypaszek, Analiza Modeli Reologicznych Stosowanych w Technologiach Inżynierskich, Wiertnictwo nafta gaz 23 (2006) 523-532.
Google Scholar
[13]
E. Kondratiev, E. Jak, Modeling of Viscosities of the Partly Crystallized Slags in the Al2O3-CaO-FeO-SiO2 System, Metall. Mater. Trans. B 32 (2001) 1027-1032.
DOI: 10.1007/s11663-001-0091-x
Google Scholar
[14]
S. Seok, S. Jung, Y. Lee, D. Min, Viscosity of highly basic slag, ISIJ Int. 47 (2007) 1090-1096.
DOI: 10.2355/isijinternational.47.1090
Google Scholar
[15]
M. Ślęzak, Mathematical Models For Calculating The Value Of Dynamic Viscosity Of A Liquid, Arch. Metall. Mater. 60 (2015) 581-589.
DOI: 10.1515/amm-2015-0177
Google Scholar
[16]
W. Gąsior, Z. Moser, Modelowanie lepkości stopów metali analiza porównawcza, in: K. Świątkowski (Ed.), Polska Metalurgia w latach 2006-2010, Wydawnictwo Naukowe AKAPIT, Kraków, 2010, pp.47-50.
Google Scholar
[17]
M. Korolczuk-Hejnak, Empiric Formulas for Dynamic Viscosity of Liquid Steel Based on Rheometric Measurements, High Temp. 52 (2014) 667-674.
DOI: 10.1134/s0018151x14050095
Google Scholar
[18]
A. Bührig-Polaczek, C. Afrath, M. Modigell, L. Pape, Solid State Phenom., 116-117, 610-613 (2006).
DOI: 10.4028/www.scientific.net/ssp.116-117.610
Google Scholar
[19]
M. Kramer, R. Jenning, A. Lohmüller, M. Hilbinger, P. Randelzhofer, R. F. Singer, Characterization of magnesium alloys for semi solid processing, in: 8th International Conference on Magnesium Alloys and their Applications, Conference Proceedings, Weimar, 26-29 October, 2009, pp.376-383.
DOI: 10.1002/3527603565.ch117
Google Scholar
[20]
M. Modigell1, L. Pape, H. R. Maier, Comparison of Rheological Measurement Techniques for Semi-Solid Aluminium Alloys, Solid State Phenom. 116-117 (2006) 606-609.
DOI: 10.4028/www.scientific.net/ssp.116-117.610
Google Scholar
[21]
Y. Hong, R. Yuansheng, Ch. Guoxiang, Rheological Behavior of Semi-Solid AZ91D Magnesium Alloy at Steady State, J. Wuhan Univ. Technol. 30 (2015) 162-165.
DOI: 10.1007/s11595-015-1119-4
Google Scholar
[22]
L. Liang, Z. Mian, Theoretical research on rheological behavior of semisolid slurry of magnesium alloy AZ91D Comp. Mat. Sc. 102 (2015) 202-207.
DOI: 10.1016/j.commatsci.2015.02.033
Google Scholar
[23]
J. Koke, M. Modigell, Flow behaviour of semi-solid metal alloys, J. Non-Newtonian Fluid Mech. 112 (2003) 141-160.
DOI: 10.1016/s0377-0257(03)00080-6
Google Scholar
[24]
M. Ślęzak, P. Bobrowski, Ł. Rogal, Microstructure analysis and rheological behavior of magnesium alloys at semi-solid temperature range, J. Mater. Eng. Perform. 27 (2018) 4593–4605.
DOI: 10.1007/s11665-018-3571-8
Google Scholar
[25]
M. Ślęzak, Study of semi-solid magnesium alloys (with RE elements) as a non-Newtonian fluid described by rheological models; Metals, 8 (2018) 222.
DOI: 10.3390/met8040222
Google Scholar
[26]
M. Korolczuk-Hejnak, P. Migas, Analysis of selected liquid steel, Arch. Metall. Mater. 57 (2012) 963-969.
DOI: 10.2478/v10172-012-0107-3
Google Scholar
[27]
W. Ślęzak, M. Korolczuk-Hejnak, P. Migas, High Temperature Rheometric Measurements Of Mould Powders, Arch. Metall. Mater. 60 (2015) 289-294.
DOI: 10.1515/amm-2015-0046
Google Scholar
[28]
M. Korolczuk-Hejnak, Determination of the dynamic viscosity coefficient value of steel based on the rheological measurements, Wydawnictwa AGH, Kraków, (2014).
Google Scholar
[29]
M. Korolczuk-Hejnak, Determination of flow curves on selected steel grades in their liquid state, Arch. Metall. Mater. 59 (2014) 1553-1558.
DOI: 10.2478/amm-2014-0263
Google Scholar
[30]
M. Korolczuk-Hejnak, P. Migas, Selected grades of steel as rheologically defined liquid bodies, Arch. Metall. Mater. 57 (2012) 583-591.
DOI: 10.2478/v10172-012-0062-z
Google Scholar
[31]
K. Sołek, M. Korolczuk-Hejnak, M. Karbowniczek, An analysis of steel viscosity in the solidification temperature range, Arch. Metall. Mater. 56 (2011) 593-598.
DOI: 10.2478/v10172-011-0063-3
Google Scholar