[1]
C. Felho, J. Kundrak, Characterization of topography of cut surface based on theoretical roughness indexes, Key Engineering Materials 496 (2012) 194–199.
DOI: 10.4028/www.scientific.net/kem.496.194
Google Scholar
[2]
C. Felho, J. Kundrak, Comparison of theoretical and real surface roughness in face milling with octagonal and circular inserts, Key Engineering Materials 581 (2014) 360–365.
DOI: 10.4028/www.scientific.net/kem.581.360
Google Scholar
[3]
J. Kundrak, A.P. Markopoulos, T. Makkai, I. Deszpoth, A. Nagy, Analysis of the Effect of Feed on Chip Size Ratio and Cutting Forces in Face Milling for Various Cutting Speeds, Manufacturing Technology 18(3) (2018) 431–438.
DOI: 10.21062/ujep/117.2018/a/1213-2489/mt/18/3/431
Google Scholar
[4]
L.-J. Yeh, T-S. Lan, The optimal control of material removal rate with fixed tool life and speed limitation, Journal of Materials Processing Technology 121 (2002) 238–242.
DOI: 10.1016/s0924-0136(01)01243-2
Google Scholar
[5]
A.E.B. Hernandez, T. Beno, J. Repo, A. Wretland, Integrated optimization model for cutting data selection based on maximal MRR and tool utilization in continuous machining operations, CIRP Journal of Manufacturing Scienca and Technology 13 (2016) 46–50.
DOI: 10.1016/j.cirpj.2016.02.002
Google Scholar
[6]
R. Kumar, P.S. Bilga, S. Singh, Multi objective optimization using different methods of assigning weights to energy consumption responses, surface roughness and material removal rate during rough turning operation, Journal of Cleaner Production 164 (2017) 45–57.
DOI: 10.1016/j.jclepro.2017.06.077
Google Scholar
[7]
A.E.B. Hernandez, T. Beno, J. Repo, A. Wretland Analysis of tool utilization from material removal rate perspective, Procedia CIRP 29 (2015) 109–113.
DOI: 10.1016/j.procir.2015.02.183
Google Scholar
[8]
Q. Zhong, R. Tang, T. Peng, Decision rules for energy consumption minimization during material removal process in turning, Journal of Cleaner Production 140 (2017) 1819–1827.
DOI: 10.1016/j.jclepro.2016.07.084
Google Scholar
[9]
M.K. Das, K. Kumar, T.K. Barman, P. Sahoo, Optimization of process parameters in plasma arc cutting of en 31 steel based on MRR and multiple roughness characteristics using grey relational analysis, Procedia Materials Science 5 (2014) 1550–1559.
DOI: 10.1016/j.mspro.2014.07.342
Google Scholar
[10]
I. Buj-Corral, J. Vivancos-Calvet, M. Coba-Salcedo, Modelling of surface finish and material removal rate in rough honing, Precision Engineering 38 (2014) 100–108.
DOI: 10.1016/j.precisioneng.2013.07.009
Google Scholar
[11]
P. Wang, R.X. Gao, R. Yan, A deep learning-based approach to material removal rate prediction in polishing, CIRP Annals of Manufacturing Technology 66 (2017) 429–432.
DOI: 10.1016/j.cirp.2017.04.013
Google Scholar
[12]
H. Perez, J. Rios, E. Dıez, A. Vizan, Increase of material removal rate in peripheral milling by varying feed rate, Journal of Materials Processing Technology 201 (2008) 486–490.
DOI: 10.1016/j.jmatprotec.2007.11.191
Google Scholar
[13]
V. Parashar, R. Purohit, Investigation of the effects of the machining parameters on material removal rate using taguchi method in end milling of steel grade EN19, Materials Today: Proceedings 4 (2017) 336–341.
DOI: 10.1016/j.matpr.2017.01.030
Google Scholar
[14]
A.R. Shinge, U.A. Dabade, The effect of process parameters on material removal rate and dimensional variation of channel width in micro-milling of aluminium alloy 6063 T6, Procedia Manufacturing 20 (2018) 168–173.
DOI: 10.1016/j.promfg.2018.02.024
Google Scholar
[15]
N. Tamiloli, J. Venkatesan, B.V. Ramnath, A grey-fuzzy modeling for evaluating surface roughness and material removal rate of coated end milling insert, Measurement 84 (2016) 68–82.
DOI: 10.1016/j.measurement.2016.02.008
Google Scholar
[16]
C. Nath, Z. Brooks, T.R. Kurfess, Machinability study and process optimization in face milling of some super alloys with indexable copy face mill inserts, Journal of Manufacturing Processes 20 (2015) 88–97.
DOI: 10.1016/j.jmapro.2015.09.006
Google Scholar
[17]
E. Budak, A. Tekeli, Maximizing chatter free material removal rate in milling through optimal selection of axial and radial depth of cut pairs, CIRP Annals 54 (2005) 353–356.
DOI: 10.1016/s0007-8506(07)60121-8
Google Scholar
[18]
C. Moganapriya, R. Rajasekar, K. Ponappa, R. Venkatesh, S. Jerome, Influence of coating material and cutting parameters on surface roughness and material removal rate in turning process using taguchi method, Materials Today: Proceedings 5 (2018) 8532–8538.
DOI: 10.1016/j.matpr.2017.11.550
Google Scholar
[19]
J.U. Pillai, I. Sanghrajka, M. Shunmugavel, T. Muthuramalingam, M. Goldberg, G. Littlefair, Optimisation of multiple response characteristics on end milling of aluminium alloy using Taguchi-Grey relational approach, Measurement 124 (2018) 291–298.
DOI: 10.1016/j.measurement.2018.04.052
Google Scholar
[20]
T. Toth, J. Kundral, K. Gyani, The material removal rate and the surface rate as two new parameters of qualification for hard turning and grinding, In: Proceedings of the Fifth International Symposium on Tools and Methods of Competitive Engineering (TMCE 2004), Lausanne, (2004) 629–639.
Google Scholar