Analysis of 1.4571 Chrome-Nickel Steel Properties after Cold Forming by Bending

Article Preview

Abstract:

The paper deals with the problems of austenitic chrome-nickel steels and their behavior in plastic deformation processes. These steels cannot be hardened by thermal processes due to a stable austenitic structure, therefore the increase of strength is achieved only by cold forming. The deformation mechanisms of the slip or twinning are activated by the effect of the forming force in the steel. Mainly, there is formed deformation-induced martensite whose structure is different from the martensite created by the heat treatment. As the intensive hardening of austenitic chrome-nickel steels under the effect of plastic deformation is beneficial, it adversely affects the machining of these materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-36

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Kuzičkin, P. Fremunt, B. Míšek, Konštrukčné ocele tvárnené a na odliatky. Bratislava: ALFA, (1988) 304 p.

Google Scholar

[2] J. Novotný, I. Lysonkova, N. Naprstkova, S. Michna, Research of application possibilities of selected mechanically alloyed metal powders. Manufacturing Technology, vol. 17, no. 5, (2017) pp.811-815.

DOI: 10.21062/ujep/x.2017/a/1213-2489/mt/17/5/811

Google Scholar

[3] Sága, M. - Vaško, M. - Čuboňová, N. - Piekarska, W.: Optimisation Algorithms in Mechanical Engineering Applications. vyd. Harlow: Pearson. (2016) 291p.

Google Scholar

[4] J. Petru, T. Zlámal, R. Čep, M. Pagáč, M. Grepl, M., Influence of strengthening effect on machinability of the welded inconel 625 and of the wrought Inconel 625. IMETI 2013, Proceedings, (2013) 155 - 159.

Google Scholar

[5] K. Vasilko a kol., New materials and technology for their processing. Bratislava: Alfa, (1990) 368 p.

Google Scholar

[6] J. Duplák, J. Zajac, M. Hatala, D. Mitaľ, M. Kormoš, Study of surface quality after turning of steel AISI 304, Manufacturing Technology. Vol. 14, Issue 4, (2014). p.527 – 532.

DOI: 10.21062/ujep/x.2014/a/1213-2489/mt/14/4/527

Google Scholar

[7] M. Sapieta, A. Sapietova, V. Dekys, Comparison of the thermoelastic phenomenon expres-sions in stainless steels during cyclic loading. Metalurgija, vol. 56, Issue 1-2 (2017) 203-206.

Google Scholar

[8] J. Huang, X. Ye, Z. Xu, Effect of Cold Rolling on Microstructure and Mechanical Properties of AISI 301LN Metastable Austenitic Stainless Steels, Journal of Iron and Steel Research, Inter-national, vol. 19, no. 10 (2012). [online] <https://doi.org/10.1016/S1006-706X(12)60153-8>.

DOI: 10.1016/s1006-706x(12)60153-8

Google Scholar

[9] Atlas Steels, Stainless steel Grade Datasheets (2013) [online] http://www.atlassteels.com.au/doc uments/Atlas%20Grade%20datasheet%20-%20all%20datasheets%20rev%20Aug%202013.pdf.

Google Scholar

[10] M. Milad, et al. The effect of cold work on structure and properties of AISI 304 stainless steel. Journal of Materials Processing Technology, vol. 203 (2008), [online] https://doi.org/10.1016/ j.jmatprotec. 2007.09.080.

DOI: 10.1016/j.jmatprotec.2007.09.080

Google Scholar

[11] M. Oravcová, Štúdium vplyvu štruktúry na lomové vlastnosti nehrdzavejúcich ocelí používaných na výrobu implantátov : dizertačná práca. Žilina: ŽU, (2017), p.130.

Google Scholar

[12] O. Bokůvka, a kol. 2003. Návody na cvičenia z náuky o materiáli I. Žilina: EDIS, (2003) 80p.

Google Scholar

[13] M. Dvořák, F. Gajdoš, K. Novotný, Technologie tváření. Plošné a objemové tváření. Brno: Cerm, s.r.o., (2013), 169s.

Google Scholar

[14] A. Puškár, Mikroplastickosť a porušenie kovových materiálov. Bratislava:VEDA, (1986). 300p.

Google Scholar

[15] S. Kuśmierczak, T. Majzner, Analysis of the causes the degradation of part steam generator by using microscopy methods. Manufacturing Technology, 16 (5), (2016) 995-998.

DOI: 10.21062/ujep/x.2016/a/1213-2489/mt/16/5/995

Google Scholar

[16] M. Drbúl, M. Šajgalík, J. Šemcer, T. Czánová, L. Petrkovská, L. Čepová, Engineering Metrolo-gy and the quality of surfaces created by machining technologies. ŽU v Žiline, (2014) 115p.

Google Scholar

[17] Moravec, J. 2015. Teória tvárnenia kovov. Žilina : Vydavateľstvo ŽU – EDIS (2015) 147p.

Google Scholar

[18] L. Zauskova, A. Czan, M. Sajgalik, M. Drbul, Z. Rysava, Triaxial Measurement of Residual Stress after High Feed Milling Using X-ray Diffraction. Procedia Engineering, vol. 192, (2017) 982-987.

DOI: 10.1016/j.proeng.2017.06.169

Google Scholar

[19] D. Stančeková, J. Šemcer, M. Derbas, T. Kurňava, T., Methods of measuring of residual stresses and evaluation of residual state of functional surfaces by x-ray diffractometric methods, Manufacturing technolog. Vol. 13, no. 4, (2013) 547-552.

DOI: 10.21062/ujep/x.2013/a/1213-2489/mt/13/4/547

Google Scholar