[1]
D. Kuzičkin, P. Fremunt, B. Míšek, Konštrukčné ocele tvárnené a na odliatky. Bratislava: ALFA, (1988) 304 p.
Google Scholar
[2]
J. Novotný, I. Lysonkova, N. Naprstkova, S. Michna, Research of application possibilities of selected mechanically alloyed metal powders. Manufacturing Technology, vol. 17, no. 5, (2017) pp.811-815.
DOI: 10.21062/ujep/x.2017/a/1213-2489/mt/17/5/811
Google Scholar
[3]
Sága, M. - Vaško, M. - Čuboňová, N. - Piekarska, W.: Optimisation Algorithms in Mechanical Engineering Applications. vyd. Harlow: Pearson. (2016) 291p.
Google Scholar
[4]
J. Petru, T. Zlámal, R. Čep, M. Pagáč, M. Grepl, M., Influence of strengthening effect on machinability of the welded inconel 625 and of the wrought Inconel 625. IMETI 2013, Proceedings, (2013) 155 - 159.
Google Scholar
[5]
K. Vasilko a kol., New materials and technology for their processing. Bratislava: Alfa, (1990) 368 p.
Google Scholar
[6]
J. Duplák, J. Zajac, M. Hatala, D. Mitaľ, M. Kormoš, Study of surface quality after turning of steel AISI 304, Manufacturing Technology. Vol. 14, Issue 4, (2014). p.527 – 532.
DOI: 10.21062/ujep/x.2014/a/1213-2489/mt/14/4/527
Google Scholar
[7]
M. Sapieta, A. Sapietova, V. Dekys, Comparison of the thermoelastic phenomenon expres-sions in stainless steels during cyclic loading. Metalurgija, vol. 56, Issue 1-2 (2017) 203-206.
Google Scholar
[8]
J. Huang, X. Ye, Z. Xu, Effect of Cold Rolling on Microstructure and Mechanical Properties of AISI 301LN Metastable Austenitic Stainless Steels, Journal of Iron and Steel Research, Inter-national, vol. 19, no. 10 (2012). [online] <https://doi.org/10.1016/S1006-706X(12)60153-8>.
DOI: 10.1016/s1006-706x(12)60153-8
Google Scholar
[9]
Atlas Steels, Stainless steel Grade Datasheets (2013) [online] http://www.atlassteels.com.au/doc uments/Atlas%20Grade%20datasheet%20-%20all%20datasheets%20rev%20Aug%202013.pdf.
Google Scholar
[10]
M. Milad, et al. The effect of cold work on structure and properties of AISI 304 stainless steel. Journal of Materials Processing Technology, vol. 203 (2008), [online] https://doi.org/10.1016/ j.jmatprotec. 2007.09.080.
DOI: 10.1016/j.jmatprotec.2007.09.080
Google Scholar
[11]
M. Oravcová, Štúdium vplyvu štruktúry na lomové vlastnosti nehrdzavejúcich ocelí používaných na výrobu implantátov : dizertačná práca. Žilina: ŽU, (2017), p.130.
Google Scholar
[12]
O. Bokůvka, a kol. 2003. Návody na cvičenia z náuky o materiáli I. Žilina: EDIS, (2003) 80p.
Google Scholar
[13]
M. Dvořák, F. Gajdoš, K. Novotný, Technologie tváření. Plošné a objemové tváření. Brno: Cerm, s.r.o., (2013), 169s.
Google Scholar
[14]
A. Puškár, Mikroplastickosť a porušenie kovových materiálov. Bratislava:VEDA, (1986). 300p.
Google Scholar
[15]
S. Kuśmierczak, T. Majzner, Analysis of the causes the degradation of part steam generator by using microscopy methods. Manufacturing Technology, 16 (5), (2016) 995-998.
DOI: 10.21062/ujep/x.2016/a/1213-2489/mt/16/5/995
Google Scholar
[16]
M. Drbúl, M. Šajgalík, J. Šemcer, T. Czánová, L. Petrkovská, L. Čepová, Engineering Metrolo-gy and the quality of surfaces created by machining technologies. ŽU v Žiline, (2014) 115p.
Google Scholar
[17]
Moravec, J. 2015. Teória tvárnenia kovov. Žilina : Vydavateľstvo ŽU – EDIS (2015) 147p.
Google Scholar
[18]
L. Zauskova, A. Czan, M. Sajgalik, M. Drbul, Z. Rysava, Triaxial Measurement of Residual Stress after High Feed Milling Using X-ray Diffraction. Procedia Engineering, vol. 192, (2017) 982-987.
DOI: 10.1016/j.proeng.2017.06.169
Google Scholar
[19]
D. Stančeková, J. Šemcer, M. Derbas, T. Kurňava, T., Methods of measuring of residual stresses and evaluation of residual state of functional surfaces by x-ray diffractometric methods, Manufacturing technolog. Vol. 13, no. 4, (2013) 547-552.
DOI: 10.21062/ujep/x.2013/a/1213-2489/mt/13/4/547
Google Scholar