[1]
A. Görög, I. Görögová. Current concept of geometrical accuracy. In: Research papers Faculty of Materials Science and Technology Slovak University of Technology in Trnava. Vol. 22. No. 34 (2014) pp.43-50 ISSN 1336-1589.
DOI: 10.2478/rput-2014-0026
Google Scholar
[2]
J. J. Sheu, S.-Y. Lin, C.-H. Yu. Optimum die design for single pass steel tube drawing with large deformation. J. of Procedia Eng. Vol. 81 (2014) pp.688-693.
DOI: 10.1016/j.proeng.2014.10.061
Google Scholar
[3]
L. Zhang, W. Xu, J. Long, Z. Lei. Surface roughening analysis of cold drawn tube based on macro–micro coupling finite element method. Journal of Materials Processing Technology. Vol. 224 (2015) pp.189-199.
DOI: 10.1016/j.jmatprotec.2015.05.009
Google Scholar
[4]
Z. Zhao, R. Radovitzky, A. Cuitino. A study of surface roughening in FCC metals using direct numerical simulation. Acta Mater., Vol. 52 (2004) pp.5791-5804.
DOI: 10.1016/j.actamat.2004.08.037
Google Scholar
[5]
P. Groche, R. Schafer, H. Justinger, M. Ludwig. On the correlation between crystallographic grain size and surface evolution in metal forming processes. Int. J. Mech. Sci., Vol. 52 (2010), pp.523-530.
DOI: 10.1016/j.ijmecsci.2009.11.017
Google Scholar
[6]
M.R. Stoudt, J.B. Hubbard, S.D. Leigh. On the relationship between deformation-induced surface roughness and plastic strain in AA5052 - Is it really linear? Metall and Mat. Trans. A, Vol. 42 (2011) pp.2668-2679.
DOI: 10.1007/s11661-011-0694-z
Google Scholar
[7]
M.R. Stoudt, L.E. Levine, A. Creuziger, J.B. Hubbarda. The fundamental relationships between grain orientation, deformation-induced surface roughness and strain localization in an aluminium alloy. Mater. Sci. Eng. A, Vol. 530 (2011) pp.107-116.
DOI: 10.1016/j.msea.2011.09.050
Google Scholar
[8]
S. Kalpakjian, S. R. Schmid. Extrusion and Drawing of Metals Manufacturing, Engineering & Technology, Fifth Edition, ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ.
Google Scholar
[9]
M. Ridzon, J. Bilik, M. Kosik. Effect of reducing on the mechanical properties of cold drawn tubes. In DAAAM Baltic Conference: Proceedings of the 9th International Conference of DAAAM Baltic, Industrial Engineering, Tallin, Estonia (2014) pp.395-398 ISBN 978-9949-23-620-6.
Google Scholar
[10]
M. Kapustová, R. Sobota. The design of drawing process of cylindrical cup with oval bottom using computer simulation. In MATEC Web of Conferences, Vol. 95. The 3rd International Conference on Mechatronics and Mechanical Engineering 2016 (2017) pp.1-4 ISSN 2261-236X.
DOI: 10.1051/matecconf/20179510008
Google Scholar
[11]
S. E. Hughes. A Quick Guide to Welding and Weld Inspection, 1st edition (2009) p.160 ISBN 978-1-84569-641-2.
Google Scholar
[12]
M. Necpal, M. Martinkovič, Š. Václav. Determination of the coefficient of friction under cold tube drawing using FEM simulation and drawing force measurement. In Research papers Faculty of Materials Science and Technology Slovak University of Technology in Trnava. Vol. 26, no. 42 (2018) pp.29-34 ISSN 1336-1589.
DOI: 10.2478/rput-2018-0003
Google Scholar
[13]
L.K. Kabayama, S.P. Taguchi, G.A.S. Martinez. The influence of die geometry on stress distribution by experimental and FEM simulation on electrolytic copper wiredrawing, Materials Research, Vol.12, No.3 (2009) pp.281-285 Print version ISSN 1516-1439.
DOI: 10.1590/S1516-14392009000300006
Google Scholar
[14]
A. Görög, I. Görögová. Research of the influence of clamping forces on the roundness deviations of the pipes turned surface. In Research papers Faculty of Materials Science and Technology Slovak University of Technology in Trnava. Vol. 26, No. 42 (2018), pp.47-54 ISSN 1336-1589.
DOI: 10.2478/rput-2018-0005
Google Scholar
[15]
W. Sui, D. Zhang. Four Methods for Roundness Evaluation. Physics Procedia, Vol. 24 (2012) p.2159 – 2164.
DOI: 10.1016/j.phpro.2012.02.317
Google Scholar
[16]
O. Devillers, F. P. Preparata, Evaluating the cylindricity of a nominally cylindrical point set. Symposium on discrete algorithms (2000) pp.518-527.
Google Scholar