[1]
F. Caputo, G. Lamanna, A. De Luca, V. Lopresto, Numerical Simulation of LVI Test onto Composite Plates, AIP Conf. Proc. 1599 (2014) 334-337.
DOI: 10.1063/1.4876846
Google Scholar
[2]
F. Caputo, F. Di Gennaro, G. Lamanna, A. Lefons, A. Riccio, Numerical Procedures for Damage Mechanisms Analysis in CFRP Composites, Key Engineering Materials 569-570 (2013) 111-118.
DOI: 10.4028/www.scientific.net/kem.569-570.111
Google Scholar
[3]
A. De Luca, Z. Sharif-Khodaei, M.H. Aliabadi, F. Caputo, Numerical simulation of the Lamb wave propagation in impacted CFRP laminate, Procedia Engineering 167 (2016) 109-115.
DOI: 10.1016/j.proeng.2016.11.676
Google Scholar
[4]
A. De Luca, F. Caputo, Z. Sharif-Khodaei, M.H. Aliabadi, Damage characterization of composite plates under low velocity impact using ultrasonic guided waves, Composites Part B-Engineering 138 (1) (2018) 168-180.
DOI: 10.1016/j.compositesb.2017.11.042
Google Scholar
[5]
D. Perfetto, A. Greco, F. Caputo, Experimental investigation of GFRP plates under LVI phenomena with different impact energy levels, AIP Conference Proceedings 1981 (2018) 020137.
DOI: 10.1063/1.5045999
Google Scholar
[6]
F. Caputo, G. Lamanna, A. De Luca, R. Borrelli, S. Franchitti, Global-Local FE simulation of a plate LVI test, SDHM Structural Durability and Health Monitoring 9 (3), 253-267 (2013).
DOI: 10.32604/sdhm.2013.009.253
Google Scholar
[7]
A. Riccio, G. Di Felice, G. Lamanna, E. Antonucci, F. Caputo, V. Lopresto, M. Zarrelli, A global–local numerical model for the prediction of impact induced damage in composite laminates, Applied Composite Materials 21 (3) (2014) 457-466.
DOI: 10.1007/s10443-013-9343-6
Google Scholar
[8]
F. Caputo, A. De Luca, A. Greco, S. Maietta, A. Marro, A. Apicella, Investigation on the static and dynamic structural behaviors of a regional aircraft main landing gear by a new numerical methodology, Frattura ed Integrita Strutturale 12 (43) (2018) 191-204.
DOI: 10.3221/igf-esis.43.15
Google Scholar
[9]
Sepe, R. Citarella, A. De Luca, E. Armentani, Numerical and experimental investigation on the structural behaviour of a horizontal stabilizer under critical aerodynamic loading conditions, Advances in Materials Science and Engineering (2017) 1092701.
DOI: 10.1155/2017/1092701
Google Scholar
[10]
Z. Sharif-Khodaei, M. Ghajari, M.H. Aliabadi, Determination of impact location on composite stiffened panels, Smart Materials and Structures 21 (2012) 105026.
DOI: 10.1088/0964-1726/21/10/105026
Google Scholar
[11]
D.W. Sleight, N.F. Knight, J.T. Wang, Evaluation of a Progressive Failure Analysis Methodology for Laminated Composite Structures, AIAA Journal 97:1187 (1997) 2257-2272.
DOI: 10.2514/6.1997-1187
Google Scholar
[12]
R. Olsson, Analytical prediction of large mass impact damage in composite laminates. Composites Part A 32 (9) (2001) 1207-1215.
DOI: 10.1016/s1359-835x(01)00073-2
Google Scholar
[13]
N.K. Naik, Y. Chandra Sekher, Damage in woven-fabric composites subjected to low-velocity impact, Composite Science and Technology 6 (5) (2000) 731-744.
DOI: 10.1016/s0266-3538(99)00183-9
Google Scholar
[14]
G. Lamanna, C. Opran, D. Perfetto, Development of an established FE model for the simulation of LVI tests on GFRP plates, AIP Conference Proceedings 1981 (2018) 020136.
DOI: 10.1063/1.5045998
Google Scholar
[15]
Z. Hashin, Failure Criteria for Unidirectional Fiber Composites, Journal Applied Mechanism 47 (1980) 329-334.
DOI: 10.1115/1.3153664
Google Scholar
[16]
A. De Luca, F. Caputo, A review on analytical failure criteria for composite materials, AIMS Materials Science 4 (5) (2017) 1165-1185.
DOI: 10.3934/matersci.2017.5.1165
Google Scholar