Robotic Simulation Technique for Validating a Working Process on Composite Components: A Case Study

Article Preview

Abstract:

Automation plays a key role in the realisation of the Factory 4.0 and technological research, combined with the use of innovative materials, contributes to the improvement of products in terms of functional, technical and production quality. Within this context, the so-called Digital Twin allows to reproduce the real behaviour of a production system in a virtual environment, giving the possibility to numerically perform the desired analysis. Human-robot interaction (HRI) is increasing in those workplaces where the manual activity is not safe nor efficient in terms of performance (e.g. cycle time) and it is characterised by several levels of interaction (cooperation, collaboration and coexistence). The aim of this paper is to propose a numerical procedure that, based on the simulation, allows verifying the process feasibility, validating the interaction between human and robot and programming the logic controller to be implemented on the real robot. A case study about assembling of composite components of an aircraft fuselage panel is proposed. The use of the robot allows to speed up the processes of drilling and sealing, leaving to human less dangerous operations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

340-347

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Summers, Robot Capability Test and Development of Industrial Robot Positioning System for the Aerospace Industry, SAE International 114 (2005) 1108-1118.

DOI: 10.4271/2005-01-3336

Google Scholar

[2] T. Brogardh, Present and future robot control development—An industrial perspective, Annual Reviews in Control 31 (2007) 69-79.

DOI: 10.1016/j.arcontrol.2007.01.002

Google Scholar

[3] S. Hoshino, H.Seki, Y. Naka, Development of a Flexible and Agile Multi-robot Manufacturing System, 17th IFAC World Congress (2008) 15786-15791.

DOI: 10.3182/20080706-5-kr-1001.02669

Google Scholar

[4] A M. Goodrich e A. Schultz, Human robot interaction: a Survey, Found Trends HCI 1 (2007) 263-275.

Google Scholar

[5] R. R. Murphy, R. Nomura, Billard A. e J. Burke, Human–Robot Interaction, IEEE Robotics & Automation Magazine 17 (2010) 85-89.

DOI: 10.1109/mra.2010.936953

Google Scholar

[6] J. Schmidtler, V. Knott, C. Holzel e K. Bengler, Human Centered Assistance Applications for the working environment of the future, Occupational Ergonomics 12 (2015) 83-95.

DOI: 10.3233/oer-150226

Google Scholar

[7] ISO/TS 15066, Robots and robotic devices: collaborative robots,, Technical Specification ISO/TS 15066, International Organization for Standardization, (2010).

DOI: 10.31030/2584636

Google Scholar

[8] ISO 10218-1, Robots and robotic devices – safety requirements for industrial robots – Part 1: robots,, Norm ISO 10218-1, International Organization for Standardization, (2011).

DOI: 10.3403/30218711

Google Scholar

[9] ISO 10218-2, Robots and robotic devices – safety requirements for industrial robots – Part 2: robot systems and integration,, Norm ISO 10218-2, International Organization for Standardization, (2011).

DOI: 10.3403/30187056

Google Scholar

[10] A. De Luca, F. Caputo, A review on analytical failure criteria for composite materials, AIMS Materials Science 4 (2017) 1165-1185.

DOI: 10.3934/matersci.2017.5.1165

Google Scholar

[11] R. Sepe, R. Citarella, A. De Luca, E. Armentani, Numerical and experimental investigation on the structural behaviour of a horizontal stabilizer under critical aerodynamic loading conditions, Advances in Materials Science and Engineering 2017 (2017).

DOI: 10.1155/2017/1092701

Google Scholar

[12] F. Caputo, G. Lamanna, A. De Luca, V. Lopresto, Numerical simulation of LVI test onto composite plates, AIP Conference Proceedings 1599 (2014) 334-337.

DOI: 10.1063/1.4876846

Google Scholar

[13] D. Perfetto, A. De Luca, G. Lamanna, A. Chiariello, F. Di Caprio, L. Di Palma, F. Caputo: submitted to Procedia Engineer (2018).

DOI: 10.1016/j.prostr.2018.11.079

Google Scholar

[14] A. Califano, Modelling the Fatigue behavior of composites under Spectrum Loading, AIP Conf Proc 1981 (2018).

Google Scholar

[15] F. Caputo, G. Lamanna, A. Soprano, Numerical modeling and simulation of a bolted hybrid joint, SDHM Structural Durability & Health Monitoring 7 (2011) 283-296.

Google Scholar

[16] G. Lamanna, F. Caputo, A. Soprano, Handling of composite-metal interface in a hybrid mechanical coupling, AIP Conference Proceedings 1 (2012) 353-355.

DOI: 10.1063/1.4738494

Google Scholar

[17] G. Lamanna, F. Caputo, A. Soprano, Geometrical parameters influencing a hybrid mechanical coupling, Key Engineering Materials 525-526 (2013) 161-164.

DOI: 10.4028/www.scientific.net/kem.525-526.161

Google Scholar

[18] R. Sepe, G. Lamanna, A. Pozzi, Tensile Testing of Hybrid Composite Joints, Applied Mechanics and Materials 575 (2014) 452-456.

DOI: 10.4028/www.scientific.net/amm.575.452

Google Scholar

[19] B. Furet, B. Jolivel, D. Le Borgne, Milling and drilling of composite materials for the aeronautics, JEC Composites 18 (2005) 41-44.

Google Scholar

[20] R. Devlieg, T. Szallay, Applied Accurate Robotic Drilling for Aircraft Fuselage, SAE Int. J. of Aerospace 3 (2010) 180-186.

DOI: 10.4271/2010-01-1836

Google Scholar

[21] F. Caputo, F. Di Gennaro, G. Lamanna, A. Lefons, A. Riccio, Numerical Procedures for Damage Mechanisms Analysis in CFRP Composites, Key Engineering Materials 569 (2013) 111-118.

DOI: 10.4028/www.scientific.net/kem.569-570.111

Google Scholar

[22] F. Caputo, G. Lamanna, A. De Luca, R. Borrelli, S. Franchitti, Global–local FE simulation of a plate LVI test, SDHM Structural Durability & Health Monitoring 2 (2014) 1-15.

DOI: 10.32604/sdhm.2013.009.253

Google Scholar

[23] F. Caputo, A. Greco, M. Fera, G. Caiazzo, S. Spada, Simulation Techniques for Ergonomic Performance Evaluation of Manual Workplaces During Preliminary Design Phase, Advances in Intelligent Systems and Computing 822 (2019) 170-180.

DOI: 10.1007/978-3-319-96077-7_18

Google Scholar

[24] F. Caputo, A. Greco, E. D'Amato, I. Notaro, S. Spada, Human Posture Tracking System for Industrial Process Design and Assessment, Advances in Intelligent Systems and Computing 588 (2018) 3-15.

DOI: 10.1007/978-3-319-73888-8_70

Google Scholar

[25] M. Fera, F. Fruggiero, A. Lambiase, R. Macchiaroli, V. Todisco, A modified genetic algorithm for time and cost optimization of an additive manufacturing single-machine scheduling, IJIEC International Journal of Industrial Engineering Computation 9 (2018) 423-438.

DOI: 10.5267/j.ijiec.2018.1.001

Google Scholar

[26] B. Yuce, F. Fruggiero, M.S. Packianather, D.T. Pham, E. Mastrocinque, A. Lambiase, M. Fera, Hybrid Genetic Bees Algorithm applied to single machine scheduling with earliness and tardiness penalties, Computers & Industrial Engineering, 113 (2017) 842-858.

DOI: 10.1016/j.cie.2017.07.018

Google Scholar

[27] KUKA annual report (2016).

Google Scholar