[1]
A. De Luca, D. Perfetto, G. Petrone, A. De Fenza, F. Caputo, A sensitivity analysis on the damage detection capability of a Lamb waves based SHM system for a composite winglet, Key Eng Mat 774, pp.343-348 (2018).
DOI: 10.1016/j.prostr.2018.11.061
Google Scholar
[2]
A. De Luca, F. Caputo, Z. Sharif Khodaei, M. H. Aliabadi, Damage characterization of composite plates under low velocity impact using ultrasonic guided waves, Compos Part B-Eng, 138, pp.168-180 (2018).
DOI: 10.1016/j.compositesb.2017.11.042
Google Scholar
[3]
D. Perfetto, A. Greco, F. Caputo, Experimental investigation of GFRP plates under LVI phenomena with different impact energy levels, AIP Conf Proc 1981, 020137 (2018).
DOI: 10.1063/1.5045999
Google Scholar
[4]
G. Lamanna, C. Opran, D. Perfetto, Development of an established FE model for the simulation of LVI tests on GFRP plates, AIP Conf Proc 1981, 020136 (2018).
DOI: 10.1063/1.5045998
Google Scholar
[5]
L. Sartore, A. D'Amore, L. Di Landro, Ethylene vinyl acetate blends with cellulosic fillers and reinforcements, Polym Composite 36, pp.980-986 (2015).
DOI: 10.1002/pc.23471
Google Scholar
[6]
L. Sartore, F. Bignotti, S. Pandini, A. D'Amore, L. Di Landro,Green Composites and blends from leatherindustry waste, Polym Composite 37, 3416-3422 (2015).
DOI: 10.1002/pc.23541
Google Scholar
[7]
A. Califano, Modelling the fatigue behaviour of composites under spectrum loading, AIP Conf Proc 1981, 020144 (2018).
Google Scholar
[8]
A. Califano, R. Dell'Aversano, Theoretical approach to the study of fatigue of composites under spectrum loading, AIP Conf Proc 1981, 020143 (2018).
Google Scholar
[9]
A. D'Amore, L. Grassia, P. Verde, Modeling the flexural fatigue behaviour of glass-fibre-reinforced thermoplastic matrices, Mech Time-Depend Mat 17, pp.15-23 (2013).
DOI: 10.1007/s11043-012-9192-y
Google Scholar
[10]
A. D'Amore, L. Grassia, P. Verde, Modeling the fatigue behavior of glass fibre reinforced thermoplastic and thermosetting matrices, AIP Conf Proc 1459, 372 (2012).
DOI: 10.1063/1.4745713
Google Scholar
[11]
G.P. Sendeckyj, Fitting models to composite materials, ASTM STP 734, pp.245-260 (1981).
Google Scholar
[12]
J.N. Yang, M.D. Liu, Residual strength degradation model and theory of periodic proof tests for graphite/epoxy laminates, J Compos Mater 11, p.176–203 (1977).
DOI: 10.1177/002199837701100205
Google Scholar
[13]
G. Caprino, A. D'Amore, Fatigue life of graphite/epoxy laminates subjected to tension-compression loadings, Mech Time-Depend Mat 4, pp.139-154 (2000).
Google Scholar
[14]
H.T. Hahn, R.Y. Kim, Proof testing of composites materials, J Compos Mater 9, pp.297-311, (1975).
Google Scholar
[15]
P.C. Chou, R. Croman, Residual strength in fatigue based on the strength-life equal rank assumption, J Compos Mater, 12, pp.177-194, (1978).
DOI: 10.1177/002199837801200206
Google Scholar
[16]
A. D'Amore, G. Caprino, P. Stupak, J. Zhou, L. Nicolais, Effect of stress ratio on the flexural fatigue behaviour of continuous strand mat reinforced plastics, Sci Eng Compos Mater 5, pp.1-8 (1996).
DOI: 10.1515/secm.1996.5.1.1
Google Scholar
[17]
A. D'Amore, G. Caprino, L. Nicolais, G. Marino, Long-term behaviour of PEI and PEI-based composites subjected to physical aging, Compos Sci Technol 59 (1999).
DOI: 10.1016/s0266-3538(99)00058-5
Google Scholar
[18]
G. Caprino, A. D'Amore, F. Facciolo, Fatigue sensitivity of random glass fibre reinforced plastics, J Compos Mater 32, pp.1203-1220 (1998).
DOI: 10.1177/002199839803201204
Google Scholar
[19]
J.C. Halpin, K.L. Jerina, T.A. Johnson, Characterization of composites for the purpose of reliability evaluation, ASTM STP 521, pp.5-64 (1973).
Google Scholar
[20]
A. D'Amore, L. Grassia, Constitutive law describing the strength degradation kinetics of fibre-reinforced composites subjected to constant amplitude cyclic loading, Mech Time-Depend Mat 20, p.1–12, (2016).
DOI: 10.1007/s11043-015-9281-9
Google Scholar
[21]
A. D'Amore, M. Giorgio, L. Grassia, Modeling the residual strength of carbon fiber reinforced composites subjected to cyclic loading, Int J Fatigue 78, p.31–37 (2015).
DOI: 10.1016/j.ijfatigue.2015.03.012
Google Scholar
[22]
A. D'Amore, L. Grassia, Phenomenological approach to the study of hierarchical damage mechanisms in composite materials subjected to fatigue loadings, Compos Struct 175, pp.1-6 (2017).
DOI: 10.1016/j.compstruct.2017.04.071
Google Scholar
[23]
T.P. Philippidis, V.V. Passipoularidis, Residual strength after fatigue in composites: Theory vs. experiment, Int J Fatigue 29, pp.2104-2116 (2007).
DOI: 10.1016/j.ijfatigue.2007.01.019
Google Scholar
[24]
T.M. Dick, P.-Y.B Jar, J.-J.R. Cheng, Prediction of fatigue resistance of short-fiber-reinforced polymers, Int J Fatigue 31, pp.284-291 (2009).
DOI: 10.1016/j.ijfatigue.2008.08.011
Google Scholar
[25]
A. D'Amore, L. Grassia, A. Ceparano, Correlation between damage accumulation and strength degradation of fiber reinforced composites subjected to cyclic loading, Procedia Engineer 167, p.97 – 102 (2016).
DOI: 10.1016/j.proeng.2016.11.674
Google Scholar
[26]
M. Fraldi, A. Cutolo, L. Esposito, A. D'Amore, Visco-elastic and thermal-induced damaging in time-dependent reshaping of human cornea after conductive keratoplasty, Mech Time-Depend Mat 21, pp.45-59 (2017).
DOI: 10.1007/s11043-016-9317-9
Google Scholar
[27]
L. Grassia, A. D'Amore, Calculation of the shrinkage-induced residual stress in a viscoelastic dental restorative material, Mech Time-Depend Mat 17, pp.1-13 (2013).
DOI: 10.1007/s11043-012-9190-0
Google Scholar
[28]
L. Grassia, A. D'Amore, P. Verde, On The Inter-Conversion Between Viscoelastic Material Functions of Polycarbonate, AIP Conf Proc 1459, 375 (2012).
DOI: 10.1063/1.4745714
Google Scholar
[29]
M. Rosa, L. Grassia, A. D'Amore, G. D'Escamard, Enthalpy Relaxation of Polystyrene at Different Molecular Weight Using Fast Calorimetry, Procedia Engineer 167, pp.265-269 (2016).
DOI: 10.1016/j.proeng.2016.11.696
Google Scholar
[30]
C. Carotenuto, M. C. Merola, M. Alvarez-Romero, E. Coppola, Minale M., Rheology of natural slurries involved in a rapid mudflow with different soil organic carbon content, Colloid Surface A, 466, pp.57-65, (2015).
DOI: 10.1016/j.colsurfa.2014.10.037
Google Scholar
[31]
C. Carotenuto, F. Marinello, M. Minale, A new experimental technique to study the flow in a porous layer via rheological tests, AIP Conf Proc, 1453, pp.29-34, (2012).
DOI: 10.1063/1.4711149
Google Scholar
[32]
M. C. Merola, C. Carotenuto, V. Gargiulo, F. Stanzione, A. Ciajolo, M. Minale, Chemical–physical analysis of rheologically different samples of a heavy crude oil, Fuel Process Technol, 148, pp.236-247 (2016).
DOI: 10.1016/j.fuproc.2016.03.001
Google Scholar