Polymer-Modified Calcium-Aluminate Macro Defect Free (MDF) Cements

Article Preview

Abstract:

Cementitious Macro Defect Free (MDF) materials can be obtained in complex forms with high performance making these materials suitable for applications in many sectors. The low water to cement ratio, w/c, and the saturation of voids by means of water soluble polymers allows increasing the cement strength. However, in their standard form these materials show both the sensitivity typical of water-soluble polymers, presenting a low glass transition temperature (Tg), and the brittle behavior typical of ceramic materials and therefore low toughness. The aim of this work is to modify with various techniques the standard formulation of MDF materials by modulating toughness from a brittle to a ductile behavior. In addition, the effect of the recipes modifications will be analyzed by comparing the rheological characteristics along the processing stages.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

311-318

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. D. Birchall, Cement in the context of new materials for an energy- expensive future, Philos. Trans. R. Soc. London, A310 31 (1983).

Google Scholar

[2] P. P. Russel, MS thesis, University of Illinois at Urbana Champaign, (1991).

Google Scholar

[3] A. D'Amore and L. Grassia, Toughening the Macro Defect Free (MDF) cements, AIP Conference Proceedings, 1255, 402 (2010).

DOI: 10.1063/1.3455650

Google Scholar

[4] G. Lamanna, F. Caputo, L. Grassia, A. D'Amore, A. Soprano, Numerical simulation of a stretch bending process Key Engineering Materials, 417-418, 637-640, (2010).

DOI: 10.4028/www.scientific.net/kem.417-418.637

Google Scholar

[5] L. Grassia, A. D'Amore, Modeling the residual stresses in reactive resins-based materials: A case study of photo-sensitive composites for dental applications, AIP Conference Proceedings, 1255, 408-410, (2010).

DOI: 10.1063/1.3455652

Google Scholar

[6] L. Grassia, A. D'Amore, Modeling the flexural fatigue behavior of glass-fiber-reinforced thermoplastic matrices Mechanics of Time-Dependent Materials, 17(1), 1-13, (2013).

DOI: 10.1007/s11043-012-9192-y

Google Scholar

[7] A. D'Amore, F. Caputo, L. Grassia, M. Zarrelli, Numerical evaluation of structural relaxation-induced stresses in amorphous polymers, Composites Part A-Applied science and manufacturing S, 37, 556-64, (2006).

DOI: 10.1016/j.compositesa.2005.05.011

Google Scholar

[8] L. Grassia, A. D'Amore, Residual stresses in amorphous polymers, Macromolecular Symposia, 228, 1-15 (2005).

Google Scholar

[9] M. Zarrelli, IK. Partridge, A. D'Amore, Warpage induced in bi-material specimens: Coefficient of thermal expansion, chemical shrinkage and viscoelastic modulus evolution during cure, Composite Part A-Applied science and manufacturing S, 37, 565-70 (2006).

DOI: 10.1016/j.compositesa.2005.05.012

Google Scholar

[10] Y. Yang, A. D'Amore, Y. Di, L. Nicolais, B. Li, Journal Applied Polymer Science, 59, 1159- 66 (1996).

Google Scholar

[11] A. D'Amore, G. Caprino, L. Nicolais, G Marino, Long-term behaviour of PEI and PEI-based composites subjected to physical aging, Composite Science and Technology, 59, 1993-2003, (1999).

DOI: 10.1016/s0266-3538(99)00058-5

Google Scholar

[12] A. D'Amore, G. Caprino, P. Stupak, J Zhou, L. Nicolais, Effect of stress ratio on the flexural fatigue behaviour of continuous strand mat reinforced plasticsScience and Engineering Composite Materials, 5, 1-8, (1996).

DOI: 10.1515/secm.1996.5.1.1

Google Scholar

[13] M. Drabik, SC. Mojumdar, Prospects of novel macro-defect-free cements for the new millennium R.C.T. Slade, Ceramics – Silikaty, 46 (2), 68–73 (2001).

Google Scholar

[14] M. Rosa, L. Grassia, A. D'Amore, G. D'Escamard, Enthalpy Relaxation of Polystyrene at Different Molecular Weight Using Fast Calorimetry, Procedia Engineering, 167, 265-269, (2016).

DOI: 10.1016/j.proeng.2016.11.696

Google Scholar

[15] L. Grassia, A. D'Amore, S.L. Simon, On the viscoelastic Poisson's ratio in amorphous polymers, Journal of Rheology, 54 (5) 1009-1022, (200).

Google Scholar

[16] L. Grassia, A. D'Amore, On the interplay between viscoelasticity and structural relaxation in glassy amorphous polymers, Journal of Polymer Science, Part B: Polymer Physics, 47, (7), 724-739 (2009).

DOI: 10.1002/polb.21675

Google Scholar

[17] L. Grassia, A. D'Amore, sobaric and isothermal glass transition of PMMA: Pressure-volume- temperature experiments and modelling predictions, J. Non-Cryst Solids, 357, 414-8 (2011).

DOI: 10.1016/j.jnoncrysol.2010.07.055

Google Scholar

[18] L. Grassia, CMG Pastore, G. Mensitieri, A. D'Amore, Modeling of density evolution of PLA under ultra-high pressure/temperature histories, Polymer, 52, 4011-20, (2011).

DOI: 10.1016/j.polymer.2011.06.058

Google Scholar

[19] A. D'Amore, L. Grassia, Phenomenological approach to the study of hierarchical damage mechanisms in composite materials subjected to fatigue loadings, Composite Structures, 175, 1-6, (2017).

DOI: 10.1016/j.compstruct.2017.04.071

Google Scholar

[20] A. D'Amore, L. Grassia, Constitutive law describing the strength degradation kinetics of fibre-reinforced composites subjected to constant amplitude cyclic loading, Mechanics of Time-Dependent Materials, 20 (1), 1-12, (2016).

DOI: 10.1007/s11043-015-9281-9

Google Scholar

[21] A. D'Amore, L. Grassia, A. Ceparano, Correlations between Damage Accumulation and Strength Degradation of Fiber Reinforced Composites Subjected to Cyclic Loading, Procedia Engineering, 167, 97-102 (2016).

DOI: 10.1016/j.proeng.2016.11.674

Google Scholar

[22] A. D'Amore, L. Grassia, M. Giorgio, International Journal of Fatigue, 78, 31-37 (2015).

Google Scholar

[23] F. Xjuji, HuShuguan, The study by XPS on the interface composition and structure of high strength polymer- CaO·Al2O3, Il Cemento, (1992).

Google Scholar

[24] R. Alfani, P. Colombet, A. D'Amore, N. Nizzo, L. Nicolais, Effect of temperature on thermo-mechanical properties of Macro-Defect-Free cement-polymer composite, Journal of materials science 34 5683 – 5687 (1999).

DOI: 10.1023/a:1004701529490

Google Scholar

[25] J. Francis Young, Polyvinylalcohol, Materials Research Society Symposium Proceedings, 17 (1991).

Google Scholar

[26] C. A. Finch, Ed. Wiley & Sons (1973).

Google Scholar

[27] J. D. Birchall, Cement in the context of new materials for an energy-expensive future, Philosophical Transactions of the Royal Society London, A310, 31-42 (1983).

Google Scholar

[28] K. Kendall, A. J. Howard, J. D. Birchall, The relation between porosity, microstructure and strength, and the approach to advanced cement-based materials, Philosophical Transactions of the Royal Society London, A310, 131-153 (1983).

DOI: 10.1098/rsta.1983.0073

Google Scholar

[29] A. J. McHugh, L. S. Tan, Mechano-Chemical Aspect of the Prcessing/property/Structure Interactions in a Macro-Defect-Free cement, Adv. Cem. Bas. Mat, 1, 2-11 (1993).

DOI: 10.1016/1065-7355(93)90003-7

Google Scholar

[30] A. J. McHugh, L. S. Tan, the role of particle size and polymer molecular weight in the formation and properties of an organo-ceramic composite", Journal of molecular science, 31, 3701-3706 (1996).

DOI: 10.1007/bf00352783

Google Scholar

[31] A.J. McHugh, L.S. Tan, Evolution of mechano-chemistry and microstructure of a calcium aluminate-polymer composite: Part II. Mixing rate effects, Journal Mater. Res Journal Materials Research, 11 (7), 1739-1747 (1996).

DOI: 10.1557/jmr.1996.0218

Google Scholar

[32] A. D'Amore, C. Carfagna, M. Giamberini, Valutazione della resistenza alla frattura di polimeri termoindurenti su campioni miniutarizzati 2, 5 (1998).

Google Scholar