Investigation on Composite Energy Absorbers of a Composite Fuselage Section Subjected to Vertical Drop Test

Article Preview

Abstract:

In the aircraft industry, crashworthiness design and certification phases have been and are going to be the most attractive topics for designers, mostly because of the increasing use of composites for primary structural components. It is well known that the cargo subfloor elements of the fuselage structure play a crucial role in absorbing the kinetic energy during a crash. In particular, the stanchions, or struts, are important parts for the structural response; as a matter of fact, they connect the fuselage frames to the cabin’s floor and, ideally, are expected to crush under a compressive force in order to dissipate the impact energy in a controlled way and, consequently, to minimize the energy transferred to the passengers. The aim of this work is to demonstrate, experimentally and numerically, the energy absorption capability of the stanchions, made of both composite material and aluminium alloy, of a full-scale 95% composites made fuselage section under a critical load condition, such as an emergency landing. A Finite Element model allowing estimating the passive safety capabilities of the designed struts has been developed and herein proposed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

319-328

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Caputo, G. Lamanna, A. De Luca, V. Lopresto, Numerical Simulation of LVI Test onto Composite Plates, AIP Conference Proceedings 1599 (2014) 334-337.

DOI: 10.1063/1.4876846

Google Scholar

[2] L. Grassia, M. Iannone, A. Califano, A. D'Amore, Self-learning health monitoring algorithm in composite structures, AIP Conference Proceedings 1932 (2018) 030011.

DOI: 10.1063/1.5024161

Google Scholar

[3] A. De Luca, D. Perfetto, G. Petrone, A. De Fenza, F. Caputo, Guided-Waves in a Low Velocity Impacted Composite Winglet, Key Engineering Materials 774 (2018) 343-348.

DOI: 10.4028/www.scientific.net/kem.774.343

Google Scholar

[4] G. Lamanna, C. Opran, D. Perfetto, Development of an established FE model for the simulation of LVI tests on GFRP plates, AIP Conference Proceedings 1981 (2018) 020136.

DOI: 10.1063/1.5045998

Google Scholar

[5] D. Perfetto, A. Greco, F. Caputo, Experimental investigation of GFRP plates under LVI phenomena with different impact energy levels, AIP Conference Proceedings 1981 (2018) 020137.

DOI: 10.1063/1.5045999

Google Scholar

[6] A. De Luca, Z. Sharif-Khodaei, M.H. Aliabadi, F. Caputo, Numerical Simulation of the Lamb Wave Propagation in Impacted CFRP Laminate, Procedia Engineering 167 (2016) 109-115.

DOI: 10.1016/j.proeng.2016.11.676

Google Scholar

[7] F. Caputo, F. Di Gennaro, G. Lamanna, A. Lefons, A. Riccio, Numerical procedures for damage mechanisms analysis in CFRP composites, Key Engineering Materials 569-570 (2013) 111-118.

DOI: 10.4028/www.scientific.net/kem.569-570.111

Google Scholar

[8] F. Caputo, G. Lamanna, A. De Luca, R. Borrelli, S. Franchitti, Global-local FE Simulation of a plate LVI test, SDHM Structural Durability and Health Monitoring 9 (3) (2013) 253-267.

DOI: 10.32604/sdhm.2013.009.253

Google Scholar

[9] A. Riccio, A. Sellitto, S. Saputo, A. Russo, M. Zarrellli, V. Lopresto, Modelling the damage evolution in notched omega stiffened composite panels under compression, Composites Part B-Engineering 126 (2017) 60-71.

DOI: 10.1016/j.compositesb.2017.05.067

Google Scholar

[10] A. Riccio, A. Russo, A. Sellitto, A. Raimondo, Composite Structures 168 (2017) 104-119.

Google Scholar

[11] A. Riccio, M. Damiano, A. Raimondo, G. Di Felice, A. Sellitto, Development and application of a numerical procedure for the simulation of the Fibre Bridging, phenomenon in composite structures, Composite Structures 145 (2016) 203-216.

DOI: 10.1016/j.compstruct.2016.02.081

Google Scholar

[12] H. Mertz, P. Prasad, G. Nusholtz, Head injury risk assessment for forehead impacts, SAE Technical Paper 960099 (1996).

DOI: 10.4271/960099

Google Scholar

[13] J.S.H.M. Wismans, Injury biomechanics (1994).

Google Scholar

[14] J.S. Ruan, C. Zhou, T.B. Khalil, A.I. King, Computer Techniques and Computational Methods in Biomechanics 1, Chapter 7 (2001).

Google Scholar

[15] L. Xiaochuan, G. Jun, B. Chunyu, S. Xiasheng, M. Rangke, Drop test and crash simulation of a civil airplane fuselage section, Chinese Journal of Aeronautics 28 (2) (2015) 447-456.

DOI: 10.1109/mec.2013.6885545

Google Scholar

[16] G. Lamanna, F. Caputo, A. Soprano, Numerical Investigation on the Structural behavior of a composite impact absorber, Key Engineering Materials 417-418 (2010) 685-688.

DOI: 10.4028/www.scientific.net/kem.417-418.685

Google Scholar

[17] F. Caputo, A. De Luca, A. Greco, S. Maietta, A. Marro, A. Apicella, Investigation on the static and dynamic structural behaviors of a regional aircraft main landing gear by a new numerical methodology, Frattura ed Integrità Strutturale 12 (43) (2018) 191-204.

DOI: 10.3221/igf-esis.43.15

Google Scholar

[18] S.K. Ekman, M. Debacker, Survivability of occupants in commercial passenger aircraft accidents, Safety Science 104 (2018) 91-98.

DOI: 10.1016/j.ssci.2017.12.039

Google Scholar

[19] M. Waimer, D. Kohlgrüber, D. Hachenberg, H. Voggenreiter, Experimental study of CFRP components subjected to dynamic crash loads, Composite Structures 105 (2013) 288-299.

DOI: 10.1016/j.compstruct.2013.05.030

Google Scholar

[20] M. Guida, F. Marulo, Partial modeling of aircraft fuselage during an emergency crash landing, Procedia Engineering 88 (2014) 26-33.

DOI: 10.1016/j.proeng.2014.11.122

Google Scholar

[21] F. Marulo, M. Guida, F. Di Caprio, M. Ignarra, A. Lamboglia, B. Gambino, Fuselage crashworthiness lower lobe dynamic test, Procedia Engineering 167 (2016) 88-96.

DOI: 10.1016/j.proeng.2016.11.678

Google Scholar

[22] K.E. Jackson, E.L. Fasanella, Design, Testing, and Simulation of Crashworthy Composite Airframe Structures at NASA Langley Research Center, Comprehensive Composite Materials II 8-8 (2018) 286-307.

DOI: 10.1016/b978-0-12-803581-8.10063-3

Google Scholar

[23] M. Mahé, H. Ribet, F. Le Page, Composite fuselage crash FE modelling dedicated to enhance the design in correlation with full scale drop test, Mécanique & Industries 2 (1) (2001) 5-17.

DOI: 10.1016/s1296-2139(00)01081-2

Google Scholar

[24] Federal Aviation Administration (FAA), 14 CFR 25.562 (2006).

Google Scholar