Synthesis and Characterization of Hematite onto Cellulose Supports for Adsorption of Roxarsone

Article Preview

Abstract:

This study reports on the development of an iron oxide-cellulose composite material for the controlled removal of 4-hydroxy-3-nitrobenzenearsonic acid (roxarsone), a model organoarsenical. Hematite (He) and a hematite-cellulose (HeCell) composite adsorbents were prepared and characterized by thermal gravimetric analysis (TGA), nitrogen adsorption, and various spectroscopic (IR, Raman, XRD, and TEM) methods. The uptake of roxarsone at ambient conditions of He and HeCell, and goethite-cellulose (GoCell) adsorbent were compared to study the factors that influence adsorption. The monolayer adsorption capacity (mmol/g) of each adsorbent are listed in parentheses, as follows: cellulose (0.028), goethite (0.0730), Hematite (0.155), 10 % Fe coated GoCell (0.0222) and 10% Fe coated HeCell (0.0873). The relatively large surface area of hematite nanoparticles (NPs) and good dispersion of these NPs onto the cellulose supports contribute to their effective adsorption of roxarsone.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

180-193

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Bednar, A. J.; Garbarino, J. R.; Ferrer, I.; Rutherford, D. W.; Wershaw, R. L.; Ranville, J. F.; Wildeman, T. R., Photodegradation of roxarsone in poultry litter leachates. Sci. Total Environ. 2003, 302, 237-245.

DOI: 10.1016/s0048-9697(02)00322-4

Google Scholar

[2] Peng, H. Y.; Hu, B.; Liu, Q.; Li, J.; Li, X. F.; Z, H.; Le, C. X., Methylated Phenylarsenical Metabolites Discovered in Chiken Liver. Angew. Chem. Int. Ed. 2017, 56, 6773-6777.

DOI: 10.1002/anie.201700736

Google Scholar

[3] Brown, B. L.; Slaughter, A. D.; Schreiber, M. E., Controls on roxarsone transport in agricultural watersheds. Appl. Geochem 2005, 20, 123-133.

DOI: 10.1016/j.apgeochem.2004.06.001

Google Scholar

[4] Cornell, R. M.; Schwertmann, U., The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses. WILEY-VCH Verlag GmbH & Co.: Weinheim, 2003; p.659.

DOI: 10.1002/3527602097

Google Scholar

[5] Wu, Z. X.; Li, W.; Webley, P. A.; Zhao, D. Y., Synthesis of magnetic hollow carbon nanospheres with superior microporosity for efficient adsorption of hexavalent chromium ions. Adv. Mater. 2012, 24, 465-491.

DOI: 10.1007/s40843-015-0076-8

Google Scholar

[6] Yu, L.; Wu, H.; Wu, B.; Wang, Z.; Cao, H.; Fu, C.; Jia, N., Magnetic Fe3O4-Reduced Graphene Oxide Nanocomposites-Based Electrochemical Biosensing. Nano-Micro Letters 2014, 6 (3), 258-267.

DOI: 10.1007/bf03353790

Google Scholar

[7] Geng, Z. G.; Lin, Y.; Yu, X.; Shen, Q. H.; Ma, L.; Li, Z. Y.; Pan, N.; Wang, X. P., Highly efficient dye adsorption and removal: a functional hybrid of reduced graphene oxide-Fe3O4 nanoparticles as an easily regenerative adsorbent. J. Mater. Chem. 2012, 22, 3527-3535.

DOI: 10.1039/c2jm15544c

Google Scholar

[8] Gai, S. L.; Yang, P. P.; Ma, P. A.; Wang, D.; Li, C. X.; Li, X. B.; Niu, N.; Lin, J. Fibrous-structured magnetic and mesoporous Fe3O4/silica microspheres: synthesis and intracellular doxorubicin delivery J. Mater. Chem. 2011, 21, 16420-26.

DOI: 10.1039/c1jm13357h

Google Scholar

[9] Nata, I. F.; Sureshkumar, M.; Lee, C. K., One-pot preparation of amine-rich magnetite/bacterial cellulose nanocomposite and its application for arsenate removal. RSC Adv. 2011, 1 (4), 625-631.

DOI: 10.1039/c1ra00153a

Google Scholar

[10] Kwon, J. H.; Wilson, L. D.; Sammynaiken, R., Sorptive Uptake Studies of an Aryl-Arsenical with Iron Oxide Composites on an Activated Carbon Support. Materials, 7 2014a, 1880-1898.

DOI: 10.3390/ma7031880

Google Scholar

[11] Hokkanen, S.; Repo, E.; Lou, S.; Sillanpää, M., Removal of arsenic(V) by magnetic nanoparticle activated microfibrillated cellulose. Chem. Eng. J. 2015, 260, 886-894.

DOI: 10.1016/j.cej.2014.08.093

Google Scholar

[12] Yu, X.; Tong, S.; Ge, M.; Zuo, J.; Cao, C.; Song, W., One-step synthesis of magnetic composites of cellulose-iron oxide nanoparticles for arsenic removal. J. Mater. Chem. A 2013, 1, 959-965.

DOI: 10.1039/c2ta00315e

Google Scholar

[13] Kong, D.; Wilson, L. D., Synthesis and characterization of cellulose-goethite composites and their adsorption properties with roxarsone. Carbohydr Polym 2017, 169, 282-294.

DOI: 10.1016/j.carbpol.2017.04.019

Google Scholar

[14] Mohamed, M. H.; Wilson, L. D., Kinetic Uptake Studies of Powdered Materials in Solution. Nanomaterials 2015, 5, 1-11.

Google Scholar

[15] Schwertmann, U.; Cornell, R. M., Iron Oxides in the Laboratory. . Wiley: Chichester, NY., (2000).

Google Scholar

[16] Rout, K.; Mohapatra, M.; Anand, S., 2-Line ferrihydrite: synthesis, characterization and its adsorption behavior for removal of Pb (II), Cd (II), Cu (II) and Zn (II) from aqueous solutions. Dalton Trans. 2011, 41, 3302-3312.

DOI: 10.1039/c2dt11651k

Google Scholar

[17] Fan, M.; Dai, D.; Huang, B., Fourier Transform Infrared Spectroscopy for Natural Fibres. In Fourier Transform - Materials Analysis, Salih Salih (Ed.), InTech: Rijeka, Croatia: (2012).

DOI: 10.5772/35482

Google Scholar

[18] Legodi, M. A.; Wall, d. d., The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste. Dyes and Pigments 2007, (74), 161-168.

DOI: 10.1016/j.dyepig.2006.01.038

Google Scholar

[19] Hanesch, M., Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible application in environmental magnetic studies. Geophys. J. Int. 2009, 177 (3), 941-948.

DOI: 10.1111/j.1365-246x.2009.04122.x

Google Scholar

[20] Szymanska-Chargot, M.; Cybulska, J.; Zdunek, A., Sensing the Structural Differences in Celluloses from Apple and Bacterial Cell Wall Materials by Raman and FT-IR. Sensors 2011, (11), 5543-5560.

DOI: 10.3390/s110605543

Google Scholar

[21] Gierlinger, N.; Keplinger, T.; Harrington, M., Imaging of plant cell walls by confocal Raman microscopy. Nat Protoc. 2012, 7 (7), 1694-1708.

DOI: 10.1038/nprot.2012.092

Google Scholar

[22] Cowen, s.; Duggal, M.; Hoang, T.; Al-Abadleh, H. A., Vibrational spectroscopic characterization of some environmentally important organoarsenicals - A guide for understanding the nature of their surface complexes. Can. J. Chem. 2008, 86, 942.

DOI: 10.1139/v08-102

Google Scholar

[23] Fleger, Y.; Mastai, Y.; Rosenbluh, M.; Dressler, D. H., SERS as a probe for adsorbate orientation on silver nanoclusters. J. Raman Spectrosc. 2009, 40, 1572.

DOI: 10.1002/jrs.2300

Google Scholar

[24] Raj, A.; Raju, K.; Varghese, H. T.; Granadeiro, C. M.; Nogueira, H. I. S.; Yohannan Panicker, C., IR, Raman and SERS Spectra of 2- (Methoxycarbonylmethylsulfanyl)-3,5-dinitrobenzene Carboxylic Acid. J. Brazil. Chem. Soc. 2009, 20, 549.

DOI: 10.1590/s0103-50532009000300021

Google Scholar

[25] Avila, G.; Fernandez, J.; Mate, B.; Tejeda, G.; Montero, S., Ro-vibrational Raman Cross sections of Water Vapor in the OH Stretching Region. J. Mol. Spectrosc. 1999, 196 (1), 77-92.

DOI: 10.1006/jmsp.1999.7854

Google Scholar

[26] Poletto, M.; Pistor, V.; Zattera, A. J., Structural Characteristics and Thermal Properties of Native Cellulose. In Cellulose – Fundamental Aspects, InTech: 2013; pp.45-68.

DOI: 10.5772/50452

Google Scholar

[27] Roberts, A. P.; Liu, Q.; Rowan, C. J.; Chang, L.; Carvallo, C.; Torrent, J.; Horng, C., Characterization of hematite, goethite, greigite, and pyrrhotite using first-order reversal curve diagrams. J. Geophys. Res. 2006, 111, B12S35.

DOI: 10.1029/2006jb004715

Google Scholar

[28] Mou, F.; Guan, J. G.; Xiao, Z.; Sun, Z.; Shi, W.; Fan, X., Solvent-mediated synthesis of magnetic Fe2O3 chestnut-like amorphous-core/γ-phase-shell hierarchical nanostructures with strong As(V) removal capability. J. Mater. Chem. 2011, 21, 5414-5421.

DOI: 10.1039/c0jm03726e

Google Scholar

[29] Brunauer, S.; Emmett, P. H.; Teller, E., Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60 (2), 309-319.

DOI: 10.1021/ja01269a023

Google Scholar

[30] Barrett, E. P.; Joyner, L. G.; Halenda, P. P., The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 1951, 73 (1), 373-380.

DOI: 10.1021/ja01145a126

Google Scholar

[31] Okushita, K.; Komatsu, T.; Chikayama, E.; Kikuchi, J., Statistical approach for solid-state nmr spectra of cellulose derived from a series of variable parameters. Polym. J. 2012, 44, 895-900.

DOI: 10.1038/pj.2012.82

Google Scholar

[32] Freundlich, H., Kolloidfällung und Adsorption. Angew. Chem. 1907, 20, 749-750.

DOI: 10.1002/ange.19070201805

Google Scholar

[33] Piergiovanni, P. R., Adsorption kinetics and isotherms: A Safe, Simple, and Inexpensive Experiment for Three Levels of Students. J. Chem. Educ. 2014, 91 (4), 560-565.

DOI: 10.1021/ed400267j

Google Scholar

[34] Ho, Y. S., Pseudo-second order model for sorption processes. Proc. Biochem. 1999, 34, 451-465.

Google Scholar