[1]
Bednar, A. J.; Garbarino, J. R.; Ferrer, I.; Rutherford, D. W.; Wershaw, R. L.; Ranville, J. F.; Wildeman, T. R., Photodegradation of roxarsone in poultry litter leachates. Sci. Total Environ. 2003, 302, 237-245.
DOI: 10.1016/s0048-9697(02)00322-4
Google Scholar
[2]
Peng, H. Y.; Hu, B.; Liu, Q.; Li, J.; Li, X. F.; Z, H.; Le, C. X., Methylated Phenylarsenical Metabolites Discovered in Chiken Liver. Angew. Chem. Int. Ed. 2017, 56, 6773-6777.
DOI: 10.1002/anie.201700736
Google Scholar
[3]
Brown, B. L.; Slaughter, A. D.; Schreiber, M. E., Controls on roxarsone transport in agricultural watersheds. Appl. Geochem 2005, 20, 123-133.
DOI: 10.1016/j.apgeochem.2004.06.001
Google Scholar
[4]
Cornell, R. M.; Schwertmann, U., The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses. WILEY-VCH Verlag GmbH & Co.: Weinheim, 2003; p.659.
DOI: 10.1002/3527602097
Google Scholar
[5]
Wu, Z. X.; Li, W.; Webley, P. A.; Zhao, D. Y., Synthesis of magnetic hollow carbon nanospheres with superior microporosity for efficient adsorption of hexavalent chromium ions. Adv. Mater. 2012, 24, 465-491.
DOI: 10.1007/s40843-015-0076-8
Google Scholar
[6]
Yu, L.; Wu, H.; Wu, B.; Wang, Z.; Cao, H.; Fu, C.; Jia, N., Magnetic Fe3O4-Reduced Graphene Oxide Nanocomposites-Based Electrochemical Biosensing. Nano-Micro Letters 2014, 6 (3), 258-267.
DOI: 10.1007/bf03353790
Google Scholar
[7]
Geng, Z. G.; Lin, Y.; Yu, X.; Shen, Q. H.; Ma, L.; Li, Z. Y.; Pan, N.; Wang, X. P., Highly efficient dye adsorption and removal: a functional hybrid of reduced graphene oxide-Fe3O4 nanoparticles as an easily regenerative adsorbent. J. Mater. Chem. 2012, 22, 3527-3535.
DOI: 10.1039/c2jm15544c
Google Scholar
[8]
Gai, S. L.; Yang, P. P.; Ma, P. A.; Wang, D.; Li, C. X.; Li, X. B.; Niu, N.; Lin, J. Fibrous-structured magnetic and mesoporous Fe3O4/silica microspheres: synthesis and intracellular doxorubicin delivery J. Mater. Chem. 2011, 21, 16420-26.
DOI: 10.1039/c1jm13357h
Google Scholar
[9]
Nata, I. F.; Sureshkumar, M.; Lee, C. K., One-pot preparation of amine-rich magnetite/bacterial cellulose nanocomposite and its application for arsenate removal. RSC Adv. 2011, 1 (4), 625-631.
DOI: 10.1039/c1ra00153a
Google Scholar
[10]
Kwon, J. H.; Wilson, L. D.; Sammynaiken, R., Sorptive Uptake Studies of an Aryl-Arsenical with Iron Oxide Composites on an Activated Carbon Support. Materials, 7 2014a, 1880-1898.
DOI: 10.3390/ma7031880
Google Scholar
[11]
Hokkanen, S.; Repo, E.; Lou, S.; Sillanpää, M., Removal of arsenic(V) by magnetic nanoparticle activated microfibrillated cellulose. Chem. Eng. J. 2015, 260, 886-894.
DOI: 10.1016/j.cej.2014.08.093
Google Scholar
[12]
Yu, X.; Tong, S.; Ge, M.; Zuo, J.; Cao, C.; Song, W., One-step synthesis of magnetic composites of cellulose-iron oxide nanoparticles for arsenic removal. J. Mater. Chem. A 2013, 1, 959-965.
DOI: 10.1039/c2ta00315e
Google Scholar
[13]
Kong, D.; Wilson, L. D., Synthesis and characterization of cellulose-goethite composites and their adsorption properties with roxarsone. Carbohydr Polym 2017, 169, 282-294.
DOI: 10.1016/j.carbpol.2017.04.019
Google Scholar
[14]
Mohamed, M. H.; Wilson, L. D., Kinetic Uptake Studies of Powdered Materials in Solution. Nanomaterials 2015, 5, 1-11.
Google Scholar
[15]
Schwertmann, U.; Cornell, R. M., Iron Oxides in the Laboratory. . Wiley: Chichester, NY., (2000).
Google Scholar
[16]
Rout, K.; Mohapatra, M.; Anand, S., 2-Line ferrihydrite: synthesis, characterization and its adsorption behavior for removal of Pb (II), Cd (II), Cu (II) and Zn (II) from aqueous solutions. Dalton Trans. 2011, 41, 3302-3312.
DOI: 10.1039/c2dt11651k
Google Scholar
[17]
Fan, M.; Dai, D.; Huang, B., Fourier Transform Infrared Spectroscopy for Natural Fibres. In Fourier Transform - Materials Analysis, Salih Salih (Ed.), InTech: Rijeka, Croatia: (2012).
DOI: 10.5772/35482
Google Scholar
[18]
Legodi, M. A.; Wall, d. d., The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste. Dyes and Pigments 2007, (74), 161-168.
DOI: 10.1016/j.dyepig.2006.01.038
Google Scholar
[19]
Hanesch, M., Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible application in environmental magnetic studies. Geophys. J. Int. 2009, 177 (3), 941-948.
DOI: 10.1111/j.1365-246x.2009.04122.x
Google Scholar
[20]
Szymanska-Chargot, M.; Cybulska, J.; Zdunek, A., Sensing the Structural Differences in Celluloses from Apple and Bacterial Cell Wall Materials by Raman and FT-IR. Sensors 2011, (11), 5543-5560.
DOI: 10.3390/s110605543
Google Scholar
[21]
Gierlinger, N.; Keplinger, T.; Harrington, M., Imaging of plant cell walls by confocal Raman microscopy. Nat Protoc. 2012, 7 (7), 1694-1708.
DOI: 10.1038/nprot.2012.092
Google Scholar
[22]
Cowen, s.; Duggal, M.; Hoang, T.; Al-Abadleh, H. A., Vibrational spectroscopic characterization of some environmentally important organoarsenicals - A guide for understanding the nature of their surface complexes. Can. J. Chem. 2008, 86, 942.
DOI: 10.1139/v08-102
Google Scholar
[23]
Fleger, Y.; Mastai, Y.; Rosenbluh, M.; Dressler, D. H., SERS as a probe for adsorbate orientation on silver nanoclusters. J. Raman Spectrosc. 2009, 40, 1572.
DOI: 10.1002/jrs.2300
Google Scholar
[24]
Raj, A.; Raju, K.; Varghese, H. T.; Granadeiro, C. M.; Nogueira, H. I. S.; Yohannan Panicker, C., IR, Raman and SERS Spectra of 2- (Methoxycarbonylmethylsulfanyl)-3,5-dinitrobenzene Carboxylic Acid. J. Brazil. Chem. Soc. 2009, 20, 549.
DOI: 10.1590/s0103-50532009000300021
Google Scholar
[25]
Avila, G.; Fernandez, J.; Mate, B.; Tejeda, G.; Montero, S., Ro-vibrational Raman Cross sections of Water Vapor in the OH Stretching Region. J. Mol. Spectrosc. 1999, 196 (1), 77-92.
DOI: 10.1006/jmsp.1999.7854
Google Scholar
[26]
Poletto, M.; Pistor, V.; Zattera, A. J., Structural Characteristics and Thermal Properties of Native Cellulose. In Cellulose – Fundamental Aspects, InTech: 2013; pp.45-68.
DOI: 10.5772/50452
Google Scholar
[27]
Roberts, A. P.; Liu, Q.; Rowan, C. J.; Chang, L.; Carvallo, C.; Torrent, J.; Horng, C., Characterization of hematite, goethite, greigite, and pyrrhotite using first-order reversal curve diagrams. J. Geophys. Res. 2006, 111, B12S35.
DOI: 10.1029/2006jb004715
Google Scholar
[28]
Mou, F.; Guan, J. G.; Xiao, Z.; Sun, Z.; Shi, W.; Fan, X., Solvent-mediated synthesis of magnetic Fe2O3 chestnut-like amorphous-core/γ-phase-shell hierarchical nanostructures with strong As(V) removal capability. J. Mater. Chem. 2011, 21, 5414-5421.
DOI: 10.1039/c0jm03726e
Google Scholar
[29]
Brunauer, S.; Emmett, P. H.; Teller, E., Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60 (2), 309-319.
DOI: 10.1021/ja01269a023
Google Scholar
[30]
Barrett, E. P.; Joyner, L. G.; Halenda, P. P., The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 1951, 73 (1), 373-380.
DOI: 10.1021/ja01145a126
Google Scholar
[31]
Okushita, K.; Komatsu, T.; Chikayama, E.; Kikuchi, J., Statistical approach for solid-state nmr spectra of cellulose derived from a series of variable parameters. Polym. J. 2012, 44, 895-900.
DOI: 10.1038/pj.2012.82
Google Scholar
[32]
Freundlich, H., Kolloidfällung und Adsorption. Angew. Chem. 1907, 20, 749-750.
DOI: 10.1002/ange.19070201805
Google Scholar
[33]
Piergiovanni, P. R., Adsorption kinetics and isotherms: A Safe, Simple, and Inexpensive Experiment for Three Levels of Students. J. Chem. Educ. 2014, 91 (4), 560-565.
DOI: 10.1021/ed400267j
Google Scholar
[34]
Ho, Y. S., Pseudo-second order model for sorption processes. Proc. Biochem. 1999, 34, 451-465.
Google Scholar