[1]
E. Ma, Tuning order in disorder, Nat. Mater. 14 (2015) 547-552.
Google Scholar
[2]
W.H. Wang, Bulk metallic glasses with functional physical properties, Adv. Mater. 21 (2009) 4524-4544.
DOI: 10.1002/adma.200901053
Google Scholar
[3]
L.C. Zhang, J. Xu, E. Ma, Mechanically alloyed amorphous Ti50(Cu0.45Ni0.55)44–xAlxSi4B2 alloys with supercooled liquid region, J. Mater. Res. 17 (2002) 1743-1749.
Google Scholar
[4]
J.Q. Wang, Y.H. Liu, M.W. Chen, G.Q. Xie, D.V. Louzguine-Luzgin, A. Inoue, J.H. Perepezko, Rapid degradation of azo dye by Fe-based metallic glass powder, Adv. Funct. Mater. 22 (2012) 2567-2570.
DOI: 10.1002/adfm.201103015
Google Scholar
[5]
J.Q. Wang, Y.H. Liu, M.W. Chen, D.V. Louzguine-Luzgin, A. Inoue, J.H. Perepezko, Excellent capability in degrading azo dyes by MgZn-Based metallic glass powders, Sci. Rep. 2 (2012) 418.
DOI: 10.1038/srep00418
Google Scholar
[6]
S.X. Liang, Z. Jia, W.C. Zhang, X.F. Li, W.M. Wang, H.C. Lin, L.C. Zhang, Ultrafast activation efficiency of three peroxides by Fe78Si9B13 metallic glass under photo-enhanced catalytic oxidation: a comparative study, Appl. Catal. B Environ. 221 (2018) 108-118.
DOI: 10.1016/j.apcatb.2017.09.007
Google Scholar
[7]
J.C. Wang, Z. Jia, S.X. Liang, P. Qin, W.C. Zhang, W.M. Wang, T.B. Sercombe, L.C. Zhang, Fe73.5Si13.5B9Cu1Nb3 metallic glass: rapid activation of peroxymonosulfate towards ultrafast eosin Y degradation, Mater. Des. 140 (2018) 73-84.
DOI: 10.1016/j.matdes.2017.11.049
Google Scholar
[8]
P. Wang, J.Q. Wang, H. Li, H. Yang, J. Huo, J. Wang, C. Chang, X. Wang, R.W. Li, G. Wang, Fast decolorization of azo dyes in both alkaline and acidic solutions by Al-based metallic glasses, J. Alloys Compd. 701 (2017) 759-767.
DOI: 10.1016/j.jallcom.2017.01.168
Google Scholar
[9]
X.D. Qin, Z.W. Zhu, G. Liu, H.M. Fu, H.W. Zhang, A.M. Wang, H. Li, H.F. Zhang, Ultrafast degradation of azo dyes catalyzed by cobalt-based metallic glass, Sci. Rep. 5 (2015) 18226.
DOI: 10.1038/srep18226
Google Scholar
[10]
Y.C. Hu, Y.Z. Wang, R. Su, C.R. Cao, F. Li, C.W. Sun, Y. Yang, P.F. Guan, D.W. Ding, Z.L. Wang, W.H. Wang, A highly efficient and self‐stabilizing metallic‐glass catalyst for electrochemical hydrogen generation, Adv. Mater. 28 (2016) 10293-10297.
DOI: 10.1002/adma.201603880
Google Scholar
[11]
L. Mihailov, T. Spassov, I. Kanazirski, I. Tsvetanov, Electrocatalytic behavior of Ni-based amorphous alloys for hydrogen evolution, J. Mater. Sci. 46 (2011) 7068-7073.
DOI: 10.1007/s10853-011-5436-5
Google Scholar
[12]
M. Carmo, R.C. Sekol, S. Ding, G. Kumar, J. Schroers, A.D. Taylor, Bulk metallic glass nanowire architecture for electrochemical applications, ACS Nano 5 (2011) 2979-2983.
DOI: 10.1021/nn200033c
Google Scholar
[13]
R.C. Sekol, M. Carmo, G. Kumar, F. Gittleson, G. Doubek, K. Sun, J. Schroers, A.D. Taylor, Pd–Ni–Cu–P metallic glass nanowires for methanol and ethanol oxidation in alkaline media, Int. J. Hydrogen Energy 38 (2013) 11248-11255.
DOI: 10.1016/j.ijhydene.2013.06.017
Google Scholar
[14]
Z. Jia, S.X. Liang, W.C. Zhang, W.M. Wang, C. Yang, L.C. Zhang, Heterogeneous photo Fenton-like degradation of cibacron brilliant red 3b-A dye using amorphous Fe78Si9B13 and Fe73.5Si13.5B9Cu1Nb3 alloys: the influence of adsorption, J. Taiwan Inst. Chem. Eng. 71 (2017) 128-136.
DOI: 10.1016/j.jtice.2016.11.021
Google Scholar
[15]
L.C. Zhang, J. Xu, Glass-forming ability of melt-spun multicomponent (Ti, Zr, Hf)–(Cu, Ni, Co)–Al alloys with equiatomic substitution, J. Non-Cryst. Solids 347 (2004) 166-172.
DOI: 10.1016/j.jnoncrysol.2004.09.007
Google Scholar
[16]
L.C. Zhang, K.B. Kim, P. Yu, W.Y. Zhang, U. Kunz, J. Eckert, Amorphization in mechanically alloyed (Ti, Zr, Nb)–(Cu, Ni)–Al equiatomic alloys, J. Alloys Compd. 428 (2007) 157-163.
DOI: 10.1016/j.jallcom.2006.03.092
Google Scholar
[17]
L.C. Zhang, Z.Q. Shen, J. Xu, Mechanically milling-induced amorphization in Sn-containing Ti-based multicomponent alloy systems, Mater. Sci. Eng. A 394 (2005) 204-209.
DOI: 10.1016/j.msea.2004.11.051
Google Scholar
[18]
S.X. Liang, Z. Jia, Y.J. Liu, W. Zhang, W. Wang, J. Lu, L.C. Zhang, Compelling rejuvenated catalytic performance in metallic glasses, Adv. Mater. 30 (2018) 1802764.
DOI: 10.1002/adma.201802764
Google Scholar
[19]
S.Q. Chen, G.N. Yang, S.T. Luo, S.J. Yin, J.L. Jia, Z. Li, S.H. Gao, Y. Shao, K.F. Yao, Unexpected high performance of Fe-based nanocrystallized ribbons for azo dye decomposition, J. Mater. Chem. A 5 (2017) 14230-14240.
DOI: 10.1039/c7ta01206c
Google Scholar
[20]
P.P. Wang, J.Q. Wang, J.T. Huo, W. Xu, X.M. Wang, G. Wang, Fast degradation of azo dye by nanocrystallized Fe-based alloys, Sci. China Phys. Mech. Astron. 60 (2017) 076112.
DOI: 10.1007/s11433-017-9034-5
Google Scholar
[21]
Z. Jia, X. Duan, P. Qin, W. Zhang, W. Wang, C. Yang, H. Sun, S. Wang, L.C. Zhang, Disordered atomic packing structure of metallic glass: toward ultrafast hydroxyl radicals production rate and strong electron transfer ability in catalytic performance, Adv. Funct. Mater. 27 (2017) 1702258.
DOI: 10.1002/adfm.201702258
Google Scholar
[22]
Z. Jia, J.C. Wang, S.X. Liang, W.C. Zhang, W.M. Wang, L.C. Zhang, Activation of peroxymonosulfate by Fe78Si9B13 metallic glass: the influence of crystallization, J. Alloys Compd. 728 (2017) 525-533.
DOI: 10.1016/j.jallcom.2017.09.019
Google Scholar
[23]
S.X. Liang, Z. Jia, W.C. Zhang, W.M. Wang, L.C. Zhang, Rapid malachite green degradation using Fe73.5Si13.5B9Cu1Nb3 metallic glass for activation of persulfate under UV–vis light, Mater. Des. 119 (2017) 244-253.
DOI: 10.1016/j.matdes.2017.01.039
Google Scholar
[24]
Z. Jia, L.B.T. La, W.C. Zhang, S.X. Liang, B. Jiang, S.K. Xie, D. Habibi, L.C. Zhang, Strong enhancement on dye photocatalytic degradation by ball-milled TiO2: a study of cationic and anionic dyes, J. Mater. Sci. Technol. 33 (2017) 856-863.
DOI: 10.1016/j.jmst.2017.02.006
Google Scholar
[25]
R. Li, X.J. Liu, H. Wang, Y. Wu, K.C. Chan, Z.P. Lu, Flexible glassy grid structure for rapid degradation of azo dye, Mater. Des. 155 (2018) 346-351.
DOI: 10.1016/j.matdes.2018.06.022
Google Scholar
[26]
J. Chen, L. Zhu, Heterogeneous UV-Fenton catalytic degradation of dyestuff in water with hydroxyl-Fe pillared bentonite, Catal. Today 126 (2007) 463-470.
DOI: 10.1016/j.cattod.2007.06.022
Google Scholar
[27]
Q. Wang, M. Chen, P. Lin, Z. Cui, C. Chu, B. Shen, Investigation of FePC amorphous alloys with self-renewing behaviour for highly efficient decolorization of methylene blue, J. Mater. Chem. A 6 (2018) 10686-10699.
DOI: 10.1039/c8ta01534a
Google Scholar
[28]
Z. Jia, X. Duan, W. Zhang, W. Wang, H. Sun, S. Wang, L.C. Zhang, Ultra-sustainable Fe78Si9B13 metallic glass as a catalyst for activation of persulfate on methylene blue degradation under UV-vis light, Sci. Rep. 6 (2016) 38520.
DOI: 10.1038/srep38520
Google Scholar
[29]
L.C. Zhang, S.X. Liang, Fe-based metallic glasses in functional catalytic applications, Chem. Asian J. 13 (2018) 3575-3592.
DOI: 10.1002/asia.201801082
Google Scholar
[30]
X.F. Li, S.X. Liang, X.W. Xi, Z. Jia, S.K. Xie, H.C. Lin, J.P. Hu, L.C. Zhang, Excellent performance of Fe78Si9B13 metallic glass for activating peroxymonosulfate in degradation of naphthol green B, Metals 7 (2017) 273.
DOI: 10.3390/met7070273
Google Scholar
[31]
Z. Jia, J. Kang, W.C. Zhang, W.M. Wang, C. Yang, H. Sun, D. Habibi, L.C. Zhang, Surface aging behaviour of Fe-based amorphous alloys as catalysts during heterogeneous photo Fenton-like process for water treatment, Appl. Catal. B Environ. 204 (2017) 537-547.
DOI: 10.1016/j.apcatb.2016.12.001
Google Scholar
[32]
Z. Jia, W.C. Zhang, W.M. Wang, D. Habibi, L.C. Zhang, Amorphous Fe78Si9B13 alloy: an efficient and reusable photo-enhanced fenton-like catalyst in degradation of cibacron brilliant red 3B-A dye under uv–vis light, Appl. Catal. B Environ. 192 (2016) 46-56.
DOI: 10.1016/j.apcatb.2016.03.048
Google Scholar