Technical Analysis and Overview of the Application of Artificial Dielectric Materials in the Form of Photonic Crystal Cavity with Resonance in Dirac Leaky-Wave Antennas

Article Preview

Abstract:

Application of Artificial Dielectric Materials in the form of Photonic crystal cavity with resonance in Dirac leaky-wave Antennas. The system investigated is a Photonic crystal cavity for the radiation properties of an antenna formed by a combination of a monopole radiation source and a cavity by a dielectric layer-by-layer 3D photonic crystal. The Photonic crystal cavity under study is working at resonance, since a high directivity, and a high power enhancement are obtainable at the resonant frequency of the cavity.In addition, an approach based on (i) Hughen's wavelets and (ii) the components of the incident Intensity after transmission through the system, is suggested for optimizing the performance of the optical antennas. Also, it has been discussed that the Optical antenna fabricated by Dielectric material - Photonic crystal is a better alternative to a conventional focusing lens, in Nanoscopy, in order to concentrate the laser radiation to dimensions smaller than the diffraction limit.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

231-237

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kamal Nain Chopra, A detailed overview and technical analysis of the Photonic Crystals and their characterization with emphasis on computation and designing of Photonic Band structure ,Atti della Fond G. Ronchi , ITALY, 73 (2018) 177- 215.

Google Scholar

[2] Kamal Nain Chopra, Designing and Technical Analysis of the Use of Combination of PhCs based Hydrogel with an Enzyme Hydrogel as Biosensors, Proceedings of the 11th International Symposium on Photonics and Optoelectronics SOPO (2018) 89-95, Kunming, CHINA, TAYLOR and FRANCIS.

DOI: 10.1201/9780429447082-13

Google Scholar

[3] Kamal Nain Chopra,  Mathematical Designing and Short Qualitative Review of Unconventional Lasers based on Photonic Crystals, LAJPE, 8 (2014) 4307-1 - 4307-7.

Google Scholar

[4] Ritu Walia and Kamal Nain Chopra ,Designing and Numerical Modeling of Surface Plasmon Resonance Temperature Sensors based on Photonic Crystal Fibers with emphasis on Plasmonics and Nanophotonics  Optical Quantum Metamaterials, Proceedings of the 12th International Symposium on Photonics and Optoelectronics SOPO (2019) In Press, Xian, CHINA, TAYLOR and FRANCIS.

DOI: 10.1201/9780429283628-29

Google Scholar

[5] Kamal Nain Chopra, Modeling and designing of the devices for studying the Radiation transmission in Atmospheric Optics and the Related Phenomena, Atti della, Fond G. Ronchi ITALY, 70(2015) 247-.

Google Scholar

[6] Cecile Ghouila-Houri, Jean-Claude Gerbedoen, Abdelkrim Viard Romain Talbi, Alain Merlen, and Philippe Pernod, Design and elaboration of 1D photonic crystal cavity based on highly flexible elastomer thin layer for sensors applications, Procedia Engineering 120 ( 2015 ) 744 – 747.

DOI: 10.1016/j.proeng.2015.08.792

Google Scholar

[7] S. Paulotto, P. Baccarelli , F. Frezza, and, D. R. Jackson, Full-wave modal dispersion analysis and broadside optimization for a class of microstrip CRLH leaky-wave antennas. IEEE Trans. Microw. Theory Tech. 56 (2008) 2826–2837.

DOI: 10.1109/tmtt.2008.2007333

Google Scholar

[8] D. R. Jackson, , C. Caloz, and T. Itoh, , Leaky-wave antennas. Proc. IEEE 100 (2012) 2194–2206.

DOI: 10.1109/jproc.2012.2187410

Google Scholar

[9] S. Paulotto, P. Baccarelli, F. Frezza, and D. R. Jackson, A novel technique for open-stopband suppression in 1-D periodic printed leaky-wave antennas. IEEE Trans. Antennas Propag. 57 (2009) 1894–(1906).

DOI: 10.1109/tap.2009.2019900

Google Scholar

[10] Memarian Mohammad  and George V. Eleftheriades , Dirac leaky-wave antennas for continuous beam scanning from photonic crystals, Nature Commun. 6 (2015) 5855.

DOI: 10.1038/ncomms6855

Google Scholar

[11] X. Huang, Y. Lai, Z. H. Hang, , H. Zheng, and C. T. Chan, Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat Mater.  10 (2011) 582-586.

DOI: 10.1038/nmat3030

Google Scholar

[12] K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quote, Optical antennas: Resonators for local field enhancement, J. Appl. Phys. 94 (2003) 4632.

DOI: 10.1063/1.1626674

Google Scholar

[13] J. Xu, A. Kumar, P. Chaturvedi, K. H. Hsu, and N. X. Fang, Enhancing light coupling with plasmonic optical antennas, in Metamaterials: Theory, Design, and Applications, edited by T. J. Cui, D. Smith, and R. Liu (Springer, NY, 2010).

DOI: 10.1007/978-1-4419-0573-4_12

Google Scholar

[14] C. F. Bohren and D. R. Huffman, in Absorption and Scattering of Light by Small Particles (John Wiley, New York, NY, 1983).

Google Scholar

[15] B. Auguire and W. L. Barnes, Collective resonances in gold nanoparticles arrays, Phys. Rev. Lett. 101 (2008) 143902.

Google Scholar

[16] V. G. Kravets, F. Schedin, and A. N. Grigorenko, Extremely narrow Plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles, Phys. Rev. Lett. 101 (2008) 087403.

DOI: 10.1103/physrevlett.101.087403

Google Scholar

[17] V. A. Markel, Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres, J. Phys. B: At. Mol. Opt. Phys. 38 (2005) L115.

DOI: 10.1088/0953-4075/38/7/l02

Google Scholar

[18] Nicolas Bonod ,    Alexandre Bouhelier, Femius A.,  Femius A. Koenderink, and Ali Passian , Optical Antennas, International Journal of Optics,Volume 2012, Article ID 365109, http://dx.doi.org/10.1155/2012/365109.

DOI: 10.1155/2012/365109

Google Scholar

[19] Xin Hongbao,Namgung Bumseok, and Lee Luke, Nanoplasmonic optical antennas for life sciences and medicine,Nature ReviewsMaterials , 3 (2018).  228–243.

DOI: 10.1038/s41578-018-0033-8

Google Scholar

[20] Zohrabi Mehdi  and  M.R., Mohebbifar, Electric Field Enhancement Around Gold Tip Optical Antenna, Plasmonics10(4) · August 201DOI: 10.1007/s11468-014-9876-z.

DOI: 10.1007/s11468-014-9876-z

Google Scholar