[1]
Kamal Nain Chopra, A detailed overview and technical analysis of the Photonic Crystals and their characterization with emphasis on computation and designing of Photonic Band structure ,Atti della Fond G. Ronchi , ITALY, 73 (2018) 177- 215.
Google Scholar
[2]
Kamal Nain Chopra, Designing and Technical Analysis of the Use of Combination of PhCs based Hydrogel with an Enzyme Hydrogel as Biosensors, Proceedings of the 11th International Symposium on Photonics and Optoelectronics SOPO (2018) 89-95, Kunming, CHINA, TAYLOR and FRANCIS.
DOI: 10.1201/9780429447082-13
Google Scholar
[3]
Kamal Nain Chopra, Mathematical Designing and Short Qualitative Review of Unconventional Lasers based on Photonic Crystals, LAJPE, 8 (2014) 4307-1 - 4307-7.
Google Scholar
[4]
Ritu Walia and Kamal Nain Chopra ,Designing and Numerical Modeling of Surface Plasmon Resonance Temperature Sensors based on Photonic Crystal Fibers with emphasis on Plasmonics and Nanophotonics Optical Quantum Metamaterials, Proceedings of the 12th International Symposium on Photonics and Optoelectronics SOPO (2019) In Press, Xian, CHINA, TAYLOR and FRANCIS.
DOI: 10.1201/9780429283628-29
Google Scholar
[5]
Kamal Nain Chopra, Modeling and designing of the devices for studying the Radiation transmission in Atmospheric Optics and the Related Phenomena, Atti della, Fond G. Ronchi ITALY, 70(2015) 247-.
Google Scholar
[6]
Cecile Ghouila-Houri, Jean-Claude Gerbedoen, Abdelkrim Viard Romain Talbi, Alain Merlen, and Philippe Pernod, Design and elaboration of 1D photonic crystal cavity based on highly flexible elastomer thin layer for sensors applications, Procedia Engineering 120 ( 2015 ) 744 – 747.
DOI: 10.1016/j.proeng.2015.08.792
Google Scholar
[7]
S. Paulotto, P. Baccarelli , F. Frezza, and, D. R. Jackson, Full-wave modal dispersion analysis and broadside optimization for a class of microstrip CRLH leaky-wave antennas. IEEE Trans. Microw. Theory Tech. 56 (2008) 2826–2837.
DOI: 10.1109/tmtt.2008.2007333
Google Scholar
[8]
D. R. Jackson, , C. Caloz, and T. Itoh, , Leaky-wave antennas. Proc. IEEE 100 (2012) 2194–2206.
DOI: 10.1109/jproc.2012.2187410
Google Scholar
[9]
S. Paulotto, P. Baccarelli, F. Frezza, and D. R. Jackson, A novel technique for open-stopband suppression in 1-D periodic printed leaky-wave antennas. IEEE Trans. Antennas Propag. 57 (2009) 1894–(1906).
DOI: 10.1109/tap.2009.2019900
Google Scholar
[10]
Memarian Mohammad and George V. Eleftheriades , Dirac leaky-wave antennas for continuous beam scanning from photonic crystals, Nature Commun. 6 (2015) 5855.
DOI: 10.1038/ncomms6855
Google Scholar
[11]
X. Huang, Y. Lai, Z. H. Hang, , H. Zheng, and C. T. Chan, Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat Mater. 10 (2011) 582-586.
DOI: 10.1038/nmat3030
Google Scholar
[12]
K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quote, Optical antennas: Resonators for local field enhancement, J. Appl. Phys. 94 (2003) 4632.
DOI: 10.1063/1.1626674
Google Scholar
[13]
J. Xu, A. Kumar, P. Chaturvedi, K. H. Hsu, and N. X. Fang, Enhancing light coupling with plasmonic optical antennas, in Metamaterials: Theory, Design, and Applications, edited by T. J. Cui, D. Smith, and R. Liu (Springer, NY, 2010).
DOI: 10.1007/978-1-4419-0573-4_12
Google Scholar
[14]
C. F. Bohren and D. R. Huffman, in Absorption and Scattering of Light by Small Particles (John Wiley, New York, NY, 1983).
Google Scholar
[15]
B. Auguire and W. L. Barnes, Collective resonances in gold nanoparticles arrays, Phys. Rev. Lett. 101 (2008) 143902.
Google Scholar
[16]
V. G. Kravets, F. Schedin, and A. N. Grigorenko, Extremely narrow Plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles, Phys. Rev. Lett. 101 (2008) 087403.
DOI: 10.1103/physrevlett.101.087403
Google Scholar
[17]
V. A. Markel, Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres, J. Phys. B: At. Mol. Opt. Phys. 38 (2005) L115.
DOI: 10.1088/0953-4075/38/7/l02
Google Scholar
[18]
Nicolas Bonod , Alexandre Bouhelier, Femius A., Femius A. Koenderink, and Ali Passian , Optical Antennas, International Journal of Optics,Volume 2012, Article ID 365109, http://dx.doi.org/10.1155/2012/365109.
DOI: 10.1155/2012/365109
Google Scholar
[19]
Xin Hongbao,Namgung Bumseok, and Lee Luke, Nanoplasmonic optical antennas for life sciences and medicine,Nature ReviewsMaterials , 3 (2018). 228–243.
DOI: 10.1038/s41578-018-0033-8
Google Scholar
[20]
Zohrabi Mehdi and M.R., Mohebbifar, Electric Field Enhancement Around Gold Tip Optical Antenna, Plasmonics10(4) · August 201DOI: 10.1007/s11468-014-9876-z.
DOI: 10.1007/s11468-014-9876-z
Google Scholar